These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34145303)

  • 1. Gender specific airway gene expression in COPD sub-phenotypes supports a role of mitochondria and of different types of leukocytes.
    Esteve-Codina A; Hofer TP; Burggraf D; Heiss-Neumann MS; Gesierich W; Boland A; Olaso R; Bihoreau MT; Deleuze JF; Moeller W; Schmid O; Soler Artigas M; Renner K; Hohlfeld JM; Welte T; Fuehner T; Jerrentrup L; Koczulla AR; Greulich T; Prasse A; Müller-Quernheim J; Gupta S; Brightling C; Subramanian DR; Parr DG; Kolsum U; Gupta V; Barta I; Döme B; Strausz J; Stendardo M; Piattella M; Boschetto P; Korzybski D; Gorecka D; Nowinski A; Dabad M; Fernández-Callejo M; Endesfelder D; Zu Castell W; Hiemstra PS; Venge P; Noessner E; Griebel T; Heath S; Singh D; Gut I; Ziegler-Heitbrock L
    Sci Rep; 2021 Jun; 11(1):12848. PubMed ID: 34145303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-sequencing across three matched tissues reveals shared and tissue-specific gene expression and pathway signatures of COPD.
    Morrow JD; Chase RP; Parker MM; Glass K; Seo M; Divo M; Owen CA; Castaldi P; DeMeo DL; Silverman EK; Hersh CP
    Respir Res; 2019 Apr; 20(1):65. PubMed ID: 30940135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease.
    Carlier FM; Dupasquier S; Ambroise J; Detry B; Lecocq M; Biétry-Claudet C; Boukala Y; Gala JL; Bouzin C; Verleden SE; Hoton D; Gohy S; Bearzatto B; Pilette C
    EBioMedicine; 2020 Nov; 61():103034. PubMed ID: 33045470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD).
    Eapen MS; Hansbro PM; McAlinden K; Kim RY; Ward C; Hackett TL; Walters EH; Sohal SS
    Sci Rep; 2017 Oct; 7(1):13392. PubMed ID: 29042607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative Stress Attenuates TLR3 Responsiveness and Impairs Anti-viral Mechanisms in Bronchial Epithelial Cells From COPD and Asthma Patients.
    Menzel M; Ramu S; Calvén J; Olejnicka B; Sverrild A; Porsbjerg C; Tufvesson E; Bjermer L; Akbarshahi H; Uller L
    Front Immunol; 2019; 10():2765. PubMed ID: 31849956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease.
    Barnes PJ
    J Allergy Clin Immunol; 2016 Jul; 138(1):16-27. PubMed ID: 27373322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttranscriptional Gene Regulatory Networks in Chronic Airway Inflammatory Diseases:
    Ricciardi L; Giurato G; Memoli D; Pietrafesa M; Dal Col J; Salvato I; Nigro A; Vatrella A; Caramori G; Casolaro V; Stellato C
    Front Immunol; 2020; 11():579889. PubMed ID: 33178205
    [No Abstract]   [Full Text] [Related]  

  • 8. Expression/Activation of PAR-1 in Airway Epithelial Cells of COPD Patients: Ex Vivo/In Vitro Study.
    Montalbano AM; Chiappara G; Albano GD; Ferraro M; Di Sano C; Vitulo P; Pipitone L; Ricciardolo FLM; Anzalone G; Profita M
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between airway immunoglobulin activity and eosinophils in COPD.
    Southworth T; Higham A; Kolsum U; Li J; Scott T; Dungwa J; Sridhar S; Pham TH; Newbold P; Singh D
    J Cell Mol Med; 2021 Feb; 25(4):2203-2212. PubMed ID: 33369092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel computational analysis of large transcriptome datasets identifies sets of genes distinguishing chronic obstructive pulmonary disease from healthy lung samples.
    Roessler FK; Benedikter BJ; Schmeck B; Bar N
    Sci Rep; 2021 May; 11(1):10258. PubMed ID: 33986404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High expression of SPP1 in patients with chronic obstructive pulmonary disease (COPD) is correlated with increased risk of lung cancer.
    Miao TW; Xiao W; Du LY; Mao B; Huang W; Chen XM; Li C; Wang Y; Fu JJ
    FEBS Open Bio; 2021 Apr; 11(4):1237-1249. PubMed ID: 33626243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative weighted molecular network construction from transcriptomics and genome wide association data to identify shared genetic biomarkers for COPD and lung cancer.
    Banaganapalli B; Mallah B; Alghamdi KS; Albaqami WF; Alshaer DS; Alrayes N; Elango R; Shaik NA
    PLoS One; 2022; 17(10):e0274629. PubMed ID: 36194576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bronchial extracellular matrix from COPD patients induces altered gene expression in repopulated primary human bronchial epithelial cells.
    Hedström U; Hallgren O; Öberg L; DeMicco A; Vaarala O; Westergren-Thorsson G; Zhou X
    Sci Rep; 2018 Feb; 8(1):3502. PubMed ID: 29472603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation.
    Hodge S; Hodge G; Holmes M; Reynolds PN
    Eur Respir J; 2005 Mar; 25(3):447-54. PubMed ID: 15738287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA Profiling Reveals a Role for MicroRNA-218-5p in the Pathogenesis of Chronic Obstructive Pulmonary Disease.
    Conickx G; Mestdagh P; Avila Cobos F; Verhamme FM; Maes T; Vanaudenaerde BM; Seys LJ; Lahousse L; Kim RY; Hsu AC; Wark PA; Hansbro PM; Joos GF; Vandesompele J; Bracke KR; Brusselle GG
    Am J Respir Crit Care Med; 2017 Jan; 195(1):43-56. PubMed ID: 27409149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis.
    Araya J; Tsubouchi K; Sato N; Ito S; Minagawa S; Hara H; Hosaka Y; Ichikawa A; Saito N; Kadota T; Yoshida M; Fujita Y; Utsumi H; Kobayashi K; Yanagisawa H; Hashimoto M; Wakui H; Ishikawa T; Numata T; Kaneko Y; Asano H; Yamashita M; Odaka M; Morikawa T; Nishimura SL; Nakayama K; Kuwano K
    Autophagy; 2019 Mar; 15(3):510-526. PubMed ID: 30290714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Down-regulated peroxisome proliferator-activated receptor γ (PPARγ) in lung epithelial cells promotes a PPARγ agonist-reversible proinflammatory phenotype in chronic obstructive pulmonary disease (COPD).
    Lakshmi SP; Reddy AT; Zhang Y; Sciurba FC; Mallampalli RK; Duncan SR; Reddy RC
    J Biol Chem; 2014 Mar; 289(10):6383-6393. PubMed ID: 24368768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologic phenotyping of the human small airway epithelial response to cigarette smoking.
    Tilley AE; O'Connor TP; Hackett NR; Strulovici-Barel Y; Salit J; Amoroso N; Zhou XK; Raman T; Omberg L; Clark A; Mezey J; Crystal RG
    PLoS One; 2011; 6(7):e22798. PubMed ID: 21829517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adiponectin and functional adiponectin receptor 1 are expressed by airway epithelial cells in chronic obstructive pulmonary disease.
    Miller M; Cho JY; Pham A; Ramsdell J; Broide DH
    J Immunol; 2009 Jan; 182(1):684-91. PubMed ID: 19109202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systemic inflammatory response to smoking in chronic obstructive pulmonary disease: evidence of a gender effect.
    Faner R; Gonzalez N; Cruz T; Kalko SG; Agustí A
    PLoS One; 2014; 9(5):e97491. PubMed ID: 24830457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.