These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 3414533)

  • 21. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle.
    Sundberg CJ
    Acta Physiol Scand Suppl; 1994; 615():1-50. PubMed ID: 8140900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased IMP content in glycogen-depleted muscle fibres during submaximal exercise in man.
    Norman B; Sollevi A; Jansson E
    Acta Physiol Scand; 1988 May; 133(1):97-100. PubMed ID: 3227908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of physical training on the metabolism of skeletal muscle.
    Henriksson J
    Diabetes Care; 1992 Nov; 15(11):1701-11. PubMed ID: 1468304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Training-induced skeletal muscle adaptations are independent of systemic adaptations.
    Minotti JR; Johnson EC; Hudson TL; Zuroske G; Fukushima E; Murata G; Wise LE; Chick TW; Icenogle MV
    J Appl Physiol (1985); 1990 Jan; 68(1):289-94. PubMed ID: 2312472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscular adaptations to exercise and training.
    Hodgson DR
    Vet Clin North Am Equine Pract; 1985 Dec; 1(3):533-48. PubMed ID: 2933133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical changes during the muscle work. II. Metabolism of phosphagens during the working load.
    Böswart J; Krausová M; Van Hong N
    Acta Univ Carol Med (Praha); 1977; 23(5-6):343-55. PubMed ID: 159604
    [No Abstract]   [Full Text] [Related]  

  • 28. Physiological implications of altitude training for endurance performance at sea level: a review.
    Bailey DM; Davies B
    Br J Sports Med; 1997 Sep; 31(3):183-90. PubMed ID: 9298550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Skeletal muscle adaptations to prolonged training, overtraining and detraining in horses.
    Tyler CM; Golland LC; Evans DL; Hodgson DR; Rose RJ
    Pflugers Arch; 1998 Aug; 436(3):391-7. PubMed ID: 9644221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beta-adrenergic blockade and training in human subjects: effects on muscle metabolic capacity.
    Svedenhag J; Henriksson J; Juhlin-Dannfelt A
    Am J Physiol; 1984 Sep; 247(3 Pt 1):E305-11. PubMed ID: 6089581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of muscle blood flow.
    Hudlická O
    Clin Physiol; 1985 Jun; 5(3):201-29. PubMed ID: 3924469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Central and regional circulatory adaptations to one-leg training.
    Klausen K; Secher NH; Clausen JP; Hartling O; Trap-Jensen J
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Apr; 52(4):976-83. PubMed ID: 7085432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training.
    Neufer PD
    Sports Med; 1989 Nov; 8(5):302-20. PubMed ID: 2692122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.
    Rivera-Brown AM; Frontera WR
    PM R; 2012 Nov; 4(11):797-804. PubMed ID: 23174541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nature of the training response; peripheral and central adaptations of one-legged exercise.
    Saltin B; Nazar K; Costill DL; Stein E; Jansson E; Essén B; Gollnick D
    Acta Physiol Scand; 1976 Mar; 96(3):289-305. PubMed ID: 132082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exercise training and peripheral arterial disease.
    Haas TL; Lloyd PG; Yang HT; Terjung RL
    Compr Physiol; 2012 Oct; 2(4):2933-3017. PubMed ID: 23720270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal muscle blood flow, metabolism and morphology in chronic congestive heart failure and effects of short- and long-term angiotensin-converting enzyme inhibition.
    Drexler H; Hiroi M; Riede U; Banhardt U; Meinertz T; Just H
    Am J Cardiol; 1988 Sep; 62(8):82E-85E. PubMed ID: 3046293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletal muscle response to exercise training in congestive heart failure.
    Minotti JR; Johnson EC; Hudson TL; Zuroske G; Murata G; Fukushima E; Cagle TG; Chick TW; Massie BM; Icenogle MV
    J Clin Invest; 1990 Sep; 86(3):751-8. PubMed ID: 2394829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphagen and lactate contents of m. quadriceps femoris of man after exercise.
    Harris RC; Sahlin K; Hultman E
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Nov; 43(5):852-7. PubMed ID: 22533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.