These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34145331)

  • 21. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens.
    Malandrakis AA; Kavroulakis N; Chrysikopoulos CV
    Sci Total Environ; 2019 Jun; 670():292-299. PubMed ID: 30903901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antibacterial activity of caffeine against plant pathogenic bacteria.
    Sledz W; Los E; Paczek A; Rischka J; Motyka A; Zoledowska S; Piosik J; Lojkowska E
    Acta Biochim Pol; 2015; 62(3):605-12. PubMed ID: 26307771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Grapevine (Vitis vinifera) Crown Galls Host Distinct Microbiota.
    Faist H; Keller A; Hentschel U; Deeken R
    Appl Environ Microbiol; 2016 Sep; 82(18):5542-52. PubMed ID: 27371584
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities.
    Sessitsch A; Reiter B; Berg G
    Can J Microbiol; 2004 Apr; 50(4):239-49. PubMed ID: 15213748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pectobacterium and Dickeya Responsible for Potato Blackleg Disease in New York State in 2016.
    Ma X; Schloop A; Swingle B; Perry KL
    Plant Dis; 2018 Sep; 102(9):1834-1840. PubMed ID: 30125186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of
    Ma X; Stodghill P; Gao M; Perry KL; Swingle B
    Plant Dis; 2021 Sep; 105(9):2585-2594. PubMed ID: 33404272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya dianthicola.
    Raoul des Essarts Y; Cigna J; Quêtu-Laurent A; Caron A; Munier E; Beury-Cirou A; Hélias V; Faure D
    Appl Environ Microbiol; 2016 Jan; 82(1):268-78. PubMed ID: 26497457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth of bacterial phytopathogens in animal manures.
    Sledz W; Zoledowska S; Motyka A; Kadziński L; Banecki B
    Acta Biochim Pol; 2017; 64(1):151-159. PubMed ID: 28319994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium.
    Effantin G; Rivasseau C; Gromova M; Bligny R; Hugouvieux-Cotte-Pattat N
    Mol Microbiol; 2011 Nov; 82(4):988-97. PubMed ID: 22032684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica.
    Reiter B; Pfeifer U; Schwab H; Sessitsch A
    Appl Environ Microbiol; 2002 May; 68(5):2261-8. PubMed ID: 11976096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential Control of Potato Soft Rot Disease by the Obligate Predators
    Youdkes D; Helman Y; Burdman S; Matan O; Jurkevitch E
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31953332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolated Pseudomonas aeruginosa strain VIH2 and antagonistic properties against Ralstonia solanacearum.
    Ge X; Wei W; Li G; Sun M; Li H; Wu J; Hu F
    Microb Pathog; 2017 Oct; 111():519-526. PubMed ID: 28847494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris).
    Dimkpa CO; Hansen T; Stewart J; McLean JE; Britt DW; Anderson AJ
    Nanotoxicology; 2015 May; 9(3):271-8. PubMed ID: 24713073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles.
    Maksoud MIAA; El-Sayyad GS; Ashour AH; El-Batal AI; Elsayed MA; Gobara M; El-Khawaga AM; Abdel-Khalek EK; El-Okr MM
    Microb Pathog; 2019 Feb; 127():144-158. PubMed ID: 30502518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro Antimicrobial Activity of Biogenically Synthesized Nickel and Zinc Nanoparticles against Selected Pathogenic Bacterial Strains.
    Liaqat I; Shaanzeh Z; Bibi A; Zafar U; Naseem S; Ali R; Andleeb S; Saleem G; Liaqat I; Afzaal M
    J Oleo Sci; 2022; 71(8):1181-1188. PubMed ID: 35922930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibacterial activity and mode of action of potassium tetraborate tetrahydrate against soft-rot bacterial plant pathogens.
    Liu Y; Filiatrault MJ
    Microbiology (Reading); 2020 Sep; 166(9):837-848. PubMed ID: 32639227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient antibacterial nanosponges based on ZnO nanoparticles and doxycycline.
    Suárez DF; Monteiro APF; Ferreira DC; Brandão FD; Krambrock K; Modolo LV; Cortés ME; Sinisterra RD
    J Photochem Photobiol B; 2017 Dec; 177():85-94. PubMed ID: 29107206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First Report of Pectobacterium carotovorum subsp. carotovorum Causing Soft Rot of Orostachys japonica in Korea.
    Cheon W; Jeon YH
    Plant Dis; 2014 Jul; 98(7):989. PubMed ID: 30708926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method.
    Thakur N; Anu ; Kumar K; Kumar A
    Dalton Trans; 2021 May; 50(18):6188-6203. PubMed ID: 33871499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green biosynthesis of magnetic iron oxide (Fe
    Patra JK; Baek KH
    J Photochem Photobiol B; 2017 Aug; 173():291-300. PubMed ID: 28623821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.