These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1296 related articles for article (PubMed ID: 34145862)
1. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
2. [Predicting prolonged length of intensive care unit stay Wu JY; Lin Y; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Dec; 53(6):1163-1170. PubMed ID: 34916699 [TBL] [Abstract][Full Text] [Related]
3. Integrated Learning Model-Based Assessment of Enteral Nutrition Support in Neurosurgical Intensive Care Patients. Jiang S; Wang R; Zhang H Biomed Res Int; 2022; 2022():4061043. PubMed ID: 35677098 [TBL] [Abstract][Full Text] [Related]
4. Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach. Desautels T; Das R; Calvert J; Trivedi M; Summers C; Wales DJ; Ercole A BMJ Open; 2017 Sep; 7(9):e017199. PubMed ID: 28918412 [TBL] [Abstract][Full Text] [Related]
5. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
6. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
7. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation. Liu X; Hu P; Yeung W; Zhang Z; Ho V; Liu C; Dumontier C; Thoral PJ; Mao Z; Cao D; Mark RG; Zhang Z; Feng M; Li D; Celi LA Lancet Digit Health; 2023 Oct; 5(10):e657-e667. PubMed ID: 37599147 [TBL] [Abstract][Full Text] [Related]
8. Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data. Rojas JC; Carey KA; Edelson DP; Venable LR; Howell MD; Churpek MM Ann Am Thorac Soc; 2018 Jul; 15(7):846-853. PubMed ID: 29787309 [TBL] [Abstract][Full Text] [Related]
9. Predicting Prolonged Length of ICU Stay through Machine Learning. Wu J; Lin Y; Li P; Hu Y; Zhang L; Kong G Diagnostics (Basel); 2021 Nov; 11(12):. PubMed ID: 34943479 [TBL] [Abstract][Full Text] [Related]
10. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study. Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940 [TBL] [Abstract][Full Text] [Related]
11. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study. Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625 [TBL] [Abstract][Full Text] [Related]
12. Prediction of an Acute Hypotensive Episode During an ICU Hospitalization With a Super Learner Machine-Learning Algorithm. Cherifa M; Blet A; Chambaz A; Gayat E; Resche-Rigon M; Pirracchio R Anesth Analg; 2020 May; 130(5):1157-1166. PubMed ID: 32287123 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study. Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403 [TBL] [Abstract][Full Text] [Related]
14. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree. Li K; Shi Q; Liu S; Xie Y; Liu J Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis. Pattharanitima P; Thongprayoon C; Kaewput W; Qureshi F; Qureshi F; Petnak T; Srivali N; Gembillo G; O'Corragain OA; Chesdachai S; Vallabhajosyula S; Guru PK; Mao MA; Garovic VD; Dillon JJ; Cheungpasitporn W J Clin Med; 2021 Oct; 10(21):. PubMed ID: 34768540 [TBL] [Abstract][Full Text] [Related]
16. Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission. Hu C; Li L; Li Y; Wang F; Hu B; Peng Z Infect Dis Ther; 2022 Aug; 11(4):1695-1713. PubMed ID: 35835943 [TBL] [Abstract][Full Text] [Related]
17. AKIML Sun T; Yue X; Zhang G; Lin Q; Chen X; Huang T; Li X; Liu W; Tao Z Clin Chim Acta; 2024 Jun; 559():119705. PubMed ID: 38702035 [TBL] [Abstract][Full Text] [Related]
18. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
19. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Lin K; Hu Y; Kong G Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181 [TBL] [Abstract][Full Text] [Related]
20. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study. Pirracchio R; Petersen ML; Carone M; Rigon MR; Chevret S; van der Laan MJ Lancet Respir Med; 2015 Jan; 3(1):42-52. PubMed ID: 25466337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]