These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34145885)

  • 21. DeepPhos: prediction of protein phosphorylation sites with deep learning.
    Luo F; Wang M; Liu Y; Zhao XM; Li A
    Bioinformatics; 2019 Aug; 35(16):2766-2773. PubMed ID: 30601936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bayesian neural network with pretrained protein embedding enhances prediction accuracy of drug-protein interaction.
    Kim Q; Ko JH; Kim S; Park N; Jhe W
    Bioinformatics; 2021 Oct; 37(20):3428-3435. PubMed ID: 33978713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PLM_Sol: predicting protein solubility by benchmarking multiple protein language models with the updated Escherichia coli protein solubility dataset.
    Zhang X; Hu X; Zhang T; Yang L; Liu C; Xu N; Wang H; Sun W
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39179250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PST-PRNA: prediction of RNA-binding sites using protein surface topography and deep learning.
    Li P; Liu ZP
    Bioinformatics; 2022 Apr; 38(8):2162-2168. PubMed ID: 35150250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
    Wang D; Zeng S; Xu C; Qiu W; Liang Y; Joshi T; Xu D
    Bioinformatics; 2017 Dec; 33(24):3909-3916. PubMed ID: 29036382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SOLart: a structure-based method to predict protein solubility and aggregation.
    Hou Q; Kwasigroch JM; Rooman M; Pucci F
    Bioinformatics; 2020 Mar; 36(5):1445-1452. PubMed ID: 31603466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep graph representations embed network information for robust disease marker identification.
    Maddouri O; Qian X; Yoon BJ
    Bioinformatics; 2022 Jan; 38(4):1075-1086. PubMed ID: 34788368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FUpred: detecting protein domains through deep-learning-based contact map prediction.
    Zheng W; Zhou X; Wuyun Q; Pearce R; Li Y; Zhang Y
    Bioinformatics; 2020 Jun; 36(12):3749-3757. PubMed ID: 32227201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PON-Sol: prediction of effects of amino acid substitutions on protein solubility.
    Yang Y; Niroula A; Shen B; Vihinen M
    Bioinformatics; 2016 Jul; 32(13):2032-4. PubMed ID: 27153720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SPOT-1D-Single: improving the single-sequence-based prediction of protein secondary structure, backbone angles, solvent accessibility and half-sphere exposures using a large training set and ensembled deep learning.
    Singh J; Litfin T; Paliwal K; Singh J; Hanumanthappa AK; Zhou Y
    Bioinformatics; 2021 Oct; 37(20):3464-3472. PubMed ID: 33983382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pancancer survival prediction using a deep learning architecture with multimodal representation and integration.
    Fan Z; Jiang Z; Liang H; Han C
    Bioinform Adv; 2023; 3(1):vbad006. PubMed ID: 36845202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multidrug representation learning based on pretraining model and molecular graph for drug interaction and combination prediction.
    Ren S; Yu L; Gao L
    Bioinformatics; 2022 Sep; 38(18):4387-4394. PubMed ID: 35904544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein solubility: sequence based prediction and experimental verification.
    Smialowski P; Martin-Galiano AJ; Mikolajka A; Girschick T; Holak TA; Frishman D
    Bioinformatics; 2007 Oct; 23(19):2536-42. PubMed ID: 17150993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Small-scale expression of proteins in E. coli.
    Zerbs S; Giuliani S; Collart F
    Methods Enzymol; 2014; 536():117-31. PubMed ID: 24423272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. deepSimDEF: deep neural embeddings of gene products and gene ontology terms for functional analysis of genes.
    Pesaranghader A; Matwin S; Sokolova M; Grenier JC; Beiko RG; Hussin J
    Bioinformatics; 2022 May; 38(11):3051-3061. PubMed ID: 35536192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DeepViral: prediction of novel virus-host interactions from protein sequences and infectious disease phenotypes.
    Liu-Wei W; Kafkas Ş; Chen J; Dimonaco NJ; Tegnér J; Hoehndorf R
    Bioinformatics; 2021 Sep; 37(17):2722-2729. PubMed ID: 33682875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PIPENN: protein interface prediction from sequence with an ensemble of neural nets.
    Stringer B; de Ferrante H; Abeln S; Heringa J; Feenstra KA; Haydarlou R
    Bioinformatics; 2022 Apr; 38(8):2111-2118. PubMed ID: 35150231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.