BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34146085)

  • 21. SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.
    Benidt S; Nettleton D
    Bioinformatics; 2015 Jul; 31(13):2131-40. PubMed ID: 25725090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DEsingle for detecting three types of differential expression in single-cell RNA-seq data.
    Miao Z; Deng K; Wang X; Zhang X
    Bioinformatics; 2018 Sep; 34(18):3223-3224. PubMed ID: 29688277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MatchMixeR: a cross-platform normalization method for gene expression data integration.
    Zhang S; Shao J; Yu D; Qiu X; Zhang J
    Bioinformatics; 2020 Apr; 36(8):2486-2491. PubMed ID: 31904810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast identification of differential distributions in single-cell RNA-sequencing data with waddR.
    Schefzik R; Flesch J; Goncalves A
    Bioinformatics; 2021 Oct; 37(19):3204-3211. PubMed ID: 33792651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models.
    Rau A; Maugis-Rabusseau C; Martin-Magniette ML; Celeux G
    Bioinformatics; 2015 May; 31(9):1420-7. PubMed ID: 25563332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SPsimSeq: semi-parametric simulation of bulk and single-cell RNA-sequencing data.
    Assefa AT; Vandesompele J; Thas O
    Bioinformatics; 2020 May; 36(10):3276-3278. PubMed ID: 32065619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NetTIME: a multitask and base-pair resolution framework for improved transcription factor binding site prediction.
    Yi R; Cho K; Bonneau R
    Bioinformatics; 2022 Oct; 38(20):4762-4770. PubMed ID: 35997560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SCAFE: a software suite for analysis of transcribed cis-regulatory elements in single cells.
    Moody J; Kouno T; Chang JC; Ando Y; Carninci P; Shin JW; Hon CC
    Bioinformatics; 2022 Nov; 38(22):5126-5128. PubMed ID: 36173306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ESCO: single cell expression simulation incorporating gene co-expression.
    Tian J; Wang J; Roeder K
    Bioinformatics; 2021 Aug; 37(16):2374-2381. PubMed ID: 33624750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data.
    Smolander J; Junttila S; Venäläinen MS; Elo LL
    Bioinformatics; 2022 Feb; 38(5):1328-1335. PubMed ID: 34888622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. scDetect: a rank-based ensemble learning algorithm for cell type identification of single-cell RNA sequencing in cancer.
    Shen Y; Chu Q; Timko MP; Fan L
    Bioinformatics; 2021 Nov; 37(22):4115-4122. PubMed ID: 34048541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. scRMD: imputation for single cell RNA-seq data via robust matrix decomposition.
    Chen C; Wu C; Wu L; Wang X; Deng M; Xi R
    Bioinformatics; 2020 May; 36(10):3156-3161. PubMed ID: 32119079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. smCounter2: an accurate low-frequency variant caller for targeted sequencing data with unique molecular identifiers.
    Xu C; Gu X; Padmanabhan R; Wu Z; Peng Q; DiCarlo J; Wang Y
    Bioinformatics; 2019 Apr; 35(8):1299-1309. PubMed ID: 30192920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CMF-Impute: an accurate imputation tool for single-cell RNA-seq data.
    Xu J; Cai L; Liao B; Zhu W; Yang J
    Bioinformatics; 2020 May; 36(10):3139-3147. PubMed ID: 32073612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DEFOR: depth- and frequency-based somatic copy number alteration detector.
    Zhang H; Zhan X; Brugarolas J; Xie Y
    Bioinformatics; 2019 Oct; 35(19):3824-3825. PubMed ID: 30860569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PRIME: a probabilistic imputation method to reduce dropout effects in single-cell RNA sequencing.
    Jeong H; Liu Z
    Bioinformatics; 2020 Jul; 36(13):4021-4029. PubMed ID: 32348450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SCIBER: a simple method for removing batch effects from single-cell RNA-sequencing data.
    Gan D; Li J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36548380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies.
    Li X; Cooper NGF; O'Toole TE; Rouchka EC
    BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.