These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
623 related articles for article (PubMed ID: 34146121)
1. CDK9 keeps RNA polymerase II on track. Egloff S Cell Mol Life Sci; 2021 Jul; 78(14):5543-5567. PubMed ID: 34146121 [TBL] [Abstract][Full Text] [Related]
2. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. Dow EC; Liu H; Rice AP J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073 [TBL] [Abstract][Full Text] [Related]
3. Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. Fu TJ; Peng J; Lee G; Price DH; Flores O J Biol Chem; 1999 Dec; 274(49):34527-30. PubMed ID: 10574912 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional activity of positive transcription elongation factor b kinase in vivo requires the C-terminal domain of RNA polymerase II. Napolitano G; Majello B; Licciardo P; Giordano A; Lania L Gene; 2000 Aug; 254(1-2):139-45. PubMed ID: 10974544 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Kim YK; Bourgeois CF; Isel C; Churcher MJ; Karn J Mol Cell Biol; 2002 Jul; 22(13):4622-37. PubMed ID: 12052871 [TBL] [Abstract][Full Text] [Related]
6. A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast. Sansó M; Lee KM; Viladevall L; Jacques PÉ; Pagé V; Nagy S; Racine A; St Amour CV; Zhang C; Shokat KM; Schwer B; Robert F; Fisher RP; Tanny JC PLoS Genet; 2012; 8(8):e1002822. PubMed ID: 22876190 [TBL] [Abstract][Full Text] [Related]
8. RNA polymerase II-associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II. Yu M; Yang W; Ni T; Tang Z; Nakadai T; Zhu J; Roeder RG Science; 2015 Dec; 350(6266):1383-6. PubMed ID: 26659056 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional elongation control of hypoxic response. Soliman SHA; Iwanaszko M; Zheng B; Gold S; Howard BC; Das M; Chakrabarty RP; Chandel NS; Shilatifard A Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2321502121. PubMed ID: 38564636 [TBL] [Abstract][Full Text] [Related]
10. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. Paparidis NF; Durvale MC; Canduri F Mol Biosyst; 2017 Jan; 13(2):246-276. PubMed ID: 27833949 [TBL] [Abstract][Full Text] [Related]
11. Cyclin-dependent kinase 9 (Cdk9) of fission yeast is activated by the CDK-activating kinase Csk1, overlaps functionally with the TFIIH-associated kinase Mcs6, and associates with the mRNA cap methyltransferase Pcm1 in vivo. Pei Y; Du H; Singer J; Stamour C; Granitto S; Shuman S; Fisher RP Mol Cell Biol; 2006 Feb; 26(3):777-88. PubMed ID: 16428435 [TBL] [Abstract][Full Text] [Related]
12. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nguyen VT; Kiss T; Michels AA; Bensaude O Nature; 2001 Nov; 414(6861):322-5. PubMed ID: 11713533 [TBL] [Abstract][Full Text] [Related]
13. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Viladevall L; St Amour CV; Rosebrock A; Schneider S; Zhang C; Allen JJ; Shokat KM; Schwer B; Leatherwood JK; Fisher RP Mol Cell; 2009 Mar; 33(6):738-51. PubMed ID: 19328067 [TBL] [Abstract][Full Text] [Related]
14. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Bowman EA; Kelly WG Nucleus; 2014; 5(3):224-36. PubMed ID: 24879308 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms controlling CDK9 activity. Marshall RM; Grana X Front Biosci; 2006 Sep; 11():2598-613. PubMed ID: 16720337 [TBL] [Abstract][Full Text] [Related]
16. Distinct Cdk9-phosphatase switches act at the beginning and end of elongation by RNA polymerase II. Parua PK; Kalan S; Benjamin B; Sansó M; Fisher RP Nat Commun; 2020 Aug; 11(1):4338. PubMed ID: 32859893 [TBL] [Abstract][Full Text] [Related]
18. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146 [TBL] [Abstract][Full Text] [Related]
19. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). Qi T; Tang W; Wang L; Zhai L; Guo L; Zeng X J Biol Chem; 2011 Apr; 286(17):15171-81. PubMed ID: 21378166 [TBL] [Abstract][Full Text] [Related]
20. Human promoter directionality is determined by transcriptional initiation and the opposing activities of INTS11 and CDK9. Eaton JD; Board J; Davidson L; Estell C; West S Elife; 2024 Jul; 13():. PubMed ID: 38976490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]