These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
623 related articles for article (PubMed ID: 34146121)
41. Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription. Sansó M; Parua PK; Pinto D; Svensson JP; Pagé V; Bitton DA; MacKinnon S; Garcia P; Hidalgo E; Bähler J; Tanny JC; Fisher RP Nucleic Acids Res; 2020 Jul; 48(13):7154-7168. PubMed ID: 32496538 [TBL] [Abstract][Full Text] [Related]
42. P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates. Sansó M; Levin RS; Lipp JJ; Wang VY; Greifenberg AK; Quezada EM; Ali A; Ghosh A; Larochelle S; Rana TM; Geyer M; Tong L; Shokat KM; Fisher RP Genes Dev; 2016 Jan; 30(1):117-31. PubMed ID: 26728557 [TBL] [Abstract][Full Text] [Related]
43. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. O'Keeffe B; Fong Y; Chen D; Zhou S; Zhou Q J Biol Chem; 2000 Jan; 275(1):279-87. PubMed ID: 10617616 [TBL] [Abstract][Full Text] [Related]
44. Identification of multiple cyclin subunits of human P-TEFb. Peng J; Zhu Y; Milton JT; Price DH Genes Dev; 1998 Mar; 12(5):755-62. PubMed ID: 9499409 [TBL] [Abstract][Full Text] [Related]
45. Degradation of CDK9 by Ubiquitin E3 Ligase STUB1 Regulates P-TEFb Level and Its Functions for Global Target Gene Expression within Mammalian Cells. Basu S; Nandy A; Ghosh A; Mall DP; Biswas D Mol Cell Biol; 2023; 43(9):451-471. PubMed ID: 37564002 [TBL] [Abstract][Full Text] [Related]
46. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer. Vervoort SJ; Welsh SA; Devlin JR; Barbieri E; Knight DA; Offley S; Bjelosevic S; Costacurta M; Todorovski I; Kearney CJ; Sandow JJ; Fan Z; Blyth B; McLeod V; Vissers JHA; Pavic K; Martin BP; Gregory G; Demosthenous E; Zethoven M; Kong IY; Hawkins ED; Hogg SJ; Kelly MJ; Newbold A; Simpson KJ; Kauko O; Harvey KF; Ohlmeyer M; Westermarck J; Gray N; Gardini A; Johnstone RW Cell; 2021 Jun; 184(12):3143-3162.e32. PubMed ID: 34004147 [TBL] [Abstract][Full Text] [Related]
47. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription. Zhou M; Deng L; Lacoste V; Park HU; Pumfery A; Kashanchi F; Brady JN; Kumar A J Virol; 2004 Dec; 78(24):13522-33. PubMed ID: 15564463 [TBL] [Abstract][Full Text] [Related]
48. Transcriptional regulation by targeted recruitment of cyclin-dependent CDK9 kinase in vivo. Majello B; Napolitano G; Giordano A; Lania L Oncogene; 1999 Aug; 18(32):4598-605. PubMed ID: 10467404 [TBL] [Abstract][Full Text] [Related]
49. P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA. Lin X; Taube R; Fujinaga K; Peterlin BM J Biol Chem; 2002 May; 277(19):16873-8. PubMed ID: 11884399 [TBL] [Abstract][Full Text] [Related]
50. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Glover-Cutter K; Larochelle S; Erickson B; Zhang C; Shokat K; Fisher RP; Bentley DL Mol Cell Biol; 2009 Oct; 29(20):5455-64. PubMed ID: 19667075 [TBL] [Abstract][Full Text] [Related]
51. Cyclin T1/CDK9 interacts with influenza A virus polymerase and facilitates its association with cellular RNA polymerase II. Zhang J; Li G; Ye X J Virol; 2010 Dec; 84(24):12619-27. PubMed ID: 20943989 [TBL] [Abstract][Full Text] [Related]
52. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). Chiu YL; Cao H; Jacque JM; Stevenson M; Rana TM J Virol; 2004 Mar; 78(5):2517-29. PubMed ID: 14963154 [TBL] [Abstract][Full Text] [Related]
53. Phosphorylation of RNA polymerase II in cardiac hypertrophy: cell enlargement signals converge on cyclin T/Cdk9. Kulkarni PA; Sano M; Schneider MD Recent Prog Horm Res; 2004; 59():125-39. PubMed ID: 14749500 [TBL] [Abstract][Full Text] [Related]
54. The functional role of an interleukin 6-inducible CDK9.STAT3 complex in human gamma-fibrinogen gene expression. Hou T; Ray S; Brasier AR J Biol Chem; 2007 Dec; 282(51):37091-102. PubMed ID: 17956865 [TBL] [Abstract][Full Text] [Related]
55. The NELF pausing checkpoint mediates the functional divergence of Cdk9. DeBerardine M; Booth GT; Versluis PP; Lis JT Nat Commun; 2023 May; 14(1):2762. PubMed ID: 37179384 [TBL] [Abstract][Full Text] [Related]
56. Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: Implications for drug design and development. Caracciolo V; Laurenti G; Romano G; Carnevale V; Cimini AM; Crozier-Fitzgerald C; Gentile Warschauer E; Russo G; Giordano A Cell Cycle; 2012 Mar; 11(6):1202-16. PubMed ID: 22391209 [TBL] [Abstract][Full Text] [Related]
57. The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies. Rice AP Curr Pharm Des; 2017; 23(28):4098-4102. PubMed ID: 28677507 [TBL] [Abstract][Full Text] [Related]
58. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition. St Amour CV; Sansó M; Bösken CA; Lee KM; Larochelle S; Zhang C; Shokat KM; Geyer M; Fisher RP Mol Cell Biol; 2012 Jul; 32(13):2372-83. PubMed ID: 22508988 [TBL] [Abstract][Full Text] [Related]
59. Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes. Taube R; Lin X; Irwin D; Fujinaga K; Peterlin BM Mol Cell Biol; 2002 Jan; 22(1):321-31. PubMed ID: 11739744 [TBL] [Abstract][Full Text] [Related]
60. Actin associates with actively elongating genes and binds directly to the Cdk9 subunit of P-TEFb. Kyheröinen S; Prajapati B; Sokolova M; Schmitz M; Viita T; Geyer M; Vartiainen MK J Biol Chem; 2024 Mar; 300(3):105698. PubMed ID: 38301887 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]