BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 34146170)

  • 41. Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides.
    Graham MJ; Lee RG; Brandt TA; Tai LJ; Fu W; Peralta R; Yu R; Hurh E; Paz E; McEvoy BW; Baker BF; Pham NC; Digenio A; Hughes SG; Geary RS; Witztum JL; Crooke RM; Tsimikas S
    N Engl J Med; 2017 Jul; 377(3):222-232. PubMed ID: 28538111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New insights into ANGPLT3 in controlling lipoprotein metabolism and risk of cardiovascular diseases.
    Su X; Peng DQ
    Lipids Health Dis; 2018 Jan; 17(1):12. PubMed ID: 29334984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Angiopoietin-Like 3: From Discovery to Therapeutic Gene Editing.
    Wang X; Musunuru K
    JACC Basic Transl Sci; 2019 Oct; 4(6):755-762. PubMed ID: 31709322
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lipid-Lowering Biotechnological Drugs: from Monoclonal Antibodies to Antisense Therapies-a Clinical Perspective.
    Jia X; Liu J; Mehta A; Ballantyne CM; Virani SS
    Cardiovasc Drugs Ther; 2021 Dec; 35(6):1269-1279. PubMed ID: 32997212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antisense oligonucleotides for the treatment of dyslipidaemia.
    Visser ME; Witztum JL; Stroes ES; Kastelein JJ
    Eur Heart J; 2012 Jun; 33(12):1451-8. PubMed ID: 22634577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. APOC3 siRNA and ASO therapy for dyslipidemia.
    Chebli J; Larouche M; Gaudet D
    Curr Opin Endocrinol Diabetes Obes; 2024 Apr; 31(2):70-77. PubMed ID: 38334488
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of alirocumab on individuals with type 2 diabetes, high triglycerides, and low high-density lipoprotein cholesterol.
    Colhoun HM; Leiter LA; Müller-Wieland D; Cariou B; Ray KK; Tinahones FJ; Domenger C; Letierce A; Israel M; Samuel R; Del Prato S
    Cardiovasc Diabetol; 2020 Feb; 19(1):14. PubMed ID: 32035487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic inhibition of angiopoietin-like protein-3, lipids, and cardiometabolic risk.
    Gobeil É; Bourgault J; Mitchell PL; Houessou U; Gagnon E; Girard A; Paulin A; Manikpurage HD; Côté V; Couture C; Marceau S; Bossé Y; Thériault S; Mathieu P; Vohl MC; Tchernof A; Arsenault BJ
    Eur Heart J; 2024 Mar; 45(9):707-721. PubMed ID: 38243829
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Small interfering RNA to proprotein convertase subtilisin/kexin type 9: transforming LDL-cholesterol-lowering strategies.
    Brandts J; Ray KK
    Curr Opin Lipidol; 2020 Aug; 31(4):182-186. PubMed ID: 32487819
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasma proprotein convertase subtilisin kexin type 9 is not altered in subjects with impaired glucose metabolism and type 2 diabetes mellitus, but its relationship with non-HDL cholesterol and apolipoprotein B may be modified by type 2 diabetes mellitus: The CODAM study.
    Brouwers MC; Troutt JS; van Greevenbroek MM; Ferreira I; Feskens EJ; van der Kallen CJ; Schaper NC; Schalkwijk CG; Konrad RJ; Stehouwer CD
    Atherosclerosis; 2011 Jul; 217(1):263-7. PubMed ID: 21497351
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inclisiran-New hope in the management of lipid disorders?
    Dyrbuś K; Gąsior M; Penson P; Ray KK; Banach M
    J Clin Lipidol; 2020; 14(1):16-27. PubMed ID: 31879073
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect?
    Sahebkar A; Watts GF
    Cardiovasc Drugs Ther; 2013 Dec; 27(6):559-67. PubMed ID: 23913122
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Angiopoietin-Like Protein 3 (ANGPTL3) Modulates Lipoprotein Metabolism and Dyslipidemia.
    Chen PY; Gao WY; Liou JW; Lin CY; Wu MJ; Yen JH
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298929
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proprotein convertase subtilisin/kexin type 9 inhibition: a new therapeutic mechanism for reducing cardiovascular disease risk.
    Bergeron N; Phan BA; Ding Y; Fong A; Krauss RM
    Circulation; 2015 Oct; 132(17):1648-66. PubMed ID: 26503748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Current Phase II proprotein convertase subtilisin/kexin 9 inhibitor therapies for dyslipidemia.
    Lee P; Hegele RA
    Expert Opin Investig Drugs; 2013 Nov; 22(11):1411-23. PubMed ID: 23889692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Can Lp(a) Lowering Against Background Statin Therapy Really Reduce Cardiovascular Risk?
    Reiner Ž
    Curr Atheroscler Rep; 2019 Mar; 21(4):14. PubMed ID: 30847681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Understanding PCSK9 and anti-PCSK9 therapies.
    McKenney JM
    J Clin Lipidol; 2015; 9(2):170-86. PubMed ID: 25911073
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The next generation of triglyceride-lowering drugs: will reducing apolipoprotein C-III or angiopoietin like protein 3 reduce cardiovascular disease?
    Reeskamp LF; Tromp TR; Stroes ESG
    Curr Opin Lipidol; 2020 Jun; 31(3):140-146. PubMed ID: 32324598
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of lipoprotein(a) in atherosclerotic cardiovascular disease: A review of current and emerging therapies.
    Alhomoud IS; Talasaz A; Mehta A; Kelly MS; Sisson EM; Bucheit JD; Brown R; Dixon DL
    Pharmacotherapy; 2023 Oct; 43(10):1051-1063. PubMed ID: 37464942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low cholesterol syndrome and drug development.
    Handhle A; Viljoen A; Ramachandran R; Wierzbicki AS
    Curr Opin Cardiol; 2020 Jul; 35(4):423-427. PubMed ID: 32452920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.