BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 34146533)

  • 21. Requirement of the Mowat-Wilson Syndrome Gene Zeb2 in the Differentiation and Maintenance of Non-photoreceptor Cell Types During Retinal Development.
    Wei W; Liu B; Jiang H; Jin K; Xiang M
    Mol Neurobiol; 2019 Mar; 56(3):1719-1736. PubMed ID: 29922981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deconstructing Retinal Organoids: Single Cell RNA-Seq Reveals the Cellular Components of Human Pluripotent Stem Cell-Derived Retina.
    Collin J; Queen R; Zerti D; Dorgau B; Hussain R; Coxhead J; Cockell S; Lako M
    Stem Cells; 2019 May; 37(5):593-598. PubMed ID: 30548510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MATH5 controls the acquisition of multiple retinal cell fates.
    Feng L; Xie ZH; Ding Q; Xie X; Libby RT; Gan L
    Mol Brain; 2010 Nov; 3():36. PubMed ID: 21087508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell fate specification in the mammalian telencephalon.
    Guillemot F
    Prog Neurobiol; 2007 Sep; 83(1):37-52. PubMed ID: 17517461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation and clonal isolation of retinal stem cells from human embryonic stem cells.
    Clarke L; Ballios BG; van der Kooy D
    Eur J Neurosci; 2012 Jul; 36(1):1951-9. PubMed ID: 22591375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Longitudinal single-cell RNA-seq of hESCs-derived retinal organoids.
    Wang S; Poli S; Liang X; Peng GH
    Sci China Life Sci; 2021 Oct; 64(10):1661-1676. PubMed ID: 33521856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sox9 is critical for suppression of neurogenesis but not initiation of gliogenesis in the cerebellum.
    Vong KI; Leung CK; Behringer RR; Kwan KM
    Mol Brain; 2015 Apr; 8():25. PubMed ID: 25888505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-step transcriptional priming that drives the commitment of multipotent progenitors toward B cells.
    Miyai T; Takano J; Endo TA; Kawakami E; Agata Y; Motomura Y; Kubo M; Kashima Y; Suzuki Y; Kawamoto H; Ikawa T
    Genes Dev; 2018 Jan; 32(2):112-126. PubMed ID: 29440259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-Cell RNA Sequencing of hESC-Derived 3D Retinal Organoids Reveals Novel Genes Regulating RPC Commitment in Early Human Retinogenesis.
    Mao X; An Q; Xi H; Yang XJ; Zhang X; Yuan S; Wang J; Hu Y; Liu Q; Fan G
    Stem Cell Reports; 2019 Oct; 13(4):747-760. PubMed ID: 31543471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis.
    Remez LA; Onishi A; Menuchin-Lasowski Y; Biran A; Blackshaw S; Wahlin KJ; Zack DJ; Ashery-Padan R
    Dev Biol; 2017 Dec; 432(1):140-150. PubMed ID: 28993200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fate-restricted retinal progenitor cells adopt a molecular profile and spatial position distinct from multipotent progenitor cells.
    Buenaventura DF; Ghinia-Tegla MG; Emerson MM
    Dev Biol; 2018 Nov; 443(1):35-49. PubMed ID: 30145104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fate restriction and multipotency in retinal stem cells.
    Centanin L; Hoeckendorf B; Wittbrodt J
    Cell Stem Cell; 2011 Dec; 9(6):553-62. PubMed ID: 22136930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification.
    Zhang X; Leavey P; Appel H; Makrides N; Blackshaw S
    Trends Genet; 2023 Oct; 39(10):736-757. PubMed ID: 37423870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-Cell Transcriptomic Comparison of Human Fetal Retina, hPSC-Derived Retinal Organoids, and Long-Term Retinal Cultures.
    Sridhar A; Hoshino A; Finkbeiner CR; Chitsazan A; Dai L; Haugan AK; Eschenbacher KM; Jackson DL; Trapnell C; Bermingham-McDonogh O; Glass I; Reh TA
    Cell Rep; 2020 Feb; 30(5):1644-1659.e4. PubMed ID: 32023475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations.
    Shin D; Lee W; Lee JH; Bang D
    Sci Adv; 2019 May; 5(5):eaav2249. PubMed ID: 31106268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of retinal progenitor expansion by Frizzled receptors: implications for microphthalmia and retinal coloboma.
    Liu C; Bakeri H; Li T; Swaroop A
    Hum Mol Genet; 2012 Apr; 21(8):1848-60. PubMed ID: 22228100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological and Medical Importance of Cellular Heterogeneity Deciphered by Single-Cell RNA Sequencing.
    Gupta RK; Kuznicki J
    Cells; 2020 Jul; 9(8):. PubMed ID: 32707839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lineage Inference and Stem Cell Identity Prediction Using Single-Cell RNA-Sequencing Data.
    Sagar ; Grün D
    Methods Mol Biol; 2019; 1975():277-301. PubMed ID: 31062315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single cell transcriptome profiling of developing chick retinal cells.
    Laboissonniere LA; Martin GM; Goetz JJ; Bi R; Pope B; Weinand K; Ellson L; Fru D; Lee M; Wester AK; Liu P; Trimarchi JM
    J Comp Neurol; 2017 Aug; 525(12):2735-2781. PubMed ID: 28510275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Cell Analysis of Hematopoietic Stem Cells.
    Sturgess KHM; Calero-Nieto FJ; Göttgens B; Wilson NK
    Methods Mol Biol; 2021; 2308():301-337. PubMed ID: 34057731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.