These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 34146538)
1. Peptides of H. sapiens and P. falciparum that are predicted to bind strongly to HLA-A*24:02 and homologous to a SARS-CoV-2 peptide. Adiguzel Y Acta Trop; 2021 Sep; 221():106013. PubMed ID: 34146538 [TBL] [Abstract][Full Text] [Related]
2. Shared Pathogenicity Features and Sequences between EBV, SARS-CoV-2, and HLA Class I Molecule-binding Motifs with a Potential Role in Autoimmunity. Adiguzel Y; Mahroum N; Muller S; Blank M; Halpert G; Shoenfeld Y Clin Rev Allergy Immunol; 2023 Aug; 65(2):206-230. PubMed ID: 37505416 [TBL] [Abstract][Full Text] [Related]
3. SARS-CoV-2 Proteome Harbors Peptides Which Are Able to Trigger Autoimmunity Responses: Implications for Infection, Vaccination, and Population Coverage. Karami Fath M; Jahangiri A; Ganji M; Sefid F; Payandeh Z; Hashemi ZS; Pourzardosht N; Hessami A; Mard-Soltani M; Zakeri A; Rahbar MR; Khalili S Front Immunol; 2021; 12():705772. PubMed ID: 34447375 [TBL] [Abstract][Full Text] [Related]
4. Identification of HLA-A2 restricted CD8(+) T-lymphocyte responses to Plasmodium vivax circumsporozoite protein in individuals naturally exposed to malaria. Arévalo-Herrera M; Valencia AZ; Vergara J; Bonelo A; Fleischhauer K; González JM; Restrepo JC; López JA; Valmori D; Corradin G; Herrera S Parasite Immunol; 2002 Mar; 24(3):161-9. PubMed ID: 12078650 [TBL] [Abstract][Full Text] [Related]
5. Shared 6mer Peptides of Human and Omicron (21K and 21L) at SARS-CoV-2 Mutation Sites. Adiguzel Y; Shoenfeld Y Antibodies (Basel); 2022 Oct; 11(4):. PubMed ID: 36412834 [TBL] [Abstract][Full Text] [Related]
7. The López C; Yepes-Pérez Y; Díaz-Arévalo D; Patarroyo ME; Patarroyo MA Front Cell Infect Microbiol; 2018; 8():156. PubMed ID: 29868512 [TBL] [Abstract][Full Text] [Related]
8. CD8 Qiu C; Xiao C; Wang Z; Zhu G; Mao L; Chen X; Gao L; Deng J; Su J; Su H; Fang EF; Zhang ZJ; Zhang J; Xie C; Yuan J; Luo OJ; Huang LA; Wang P; Chen G Front Immunol; 2021; 12():764949. PubMed ID: 35116022 [TBL] [Abstract][Full Text] [Related]
9. Identification of cytotoxic T cells and their T cell receptor sequences targeting COVID-19 using MHC class I-binding peptides. Hikichi T; Sakamoto M; Harada M; Saito M; Yamane Y; Tokumura K; Nakamura Y J Hum Genet; 2022 Jul; 67(7):411-419. PubMed ID: 35110673 [TBL] [Abstract][Full Text] [Related]
10. T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. Wang YD; Sin WY; Xu GB; Yang HH; Wong TY; Pang XW; He XY; Zhang HG; Ng JN; Cheng CS; Yu J; Meng L; Yang RF; Lai ST; Guo ZH; Xie Y; Chen WF J Virol; 2004 Jun; 78(11):5612-8. PubMed ID: 15140958 [TBL] [Abstract][Full Text] [Related]
11. COVID-19 coronavirus vaccine T cell epitope prediction analysis based on distributions of HLA class I loci (HLA-A, -B, -C) across global populations. Cun Y; Li C; Shi L; Sun M; Dai S; Sun L; Shi L; Yao Y Hum Vaccin Immunother; 2021 Apr; 17(4):1097-1108. PubMed ID: 33175614 [TBL] [Abstract][Full Text] [Related]
12. Detection of EXP1-Specific CD4+ T Cell Responses Directed Against a Broad Range of Epitopes Including Two Promiscuous MHC Class II Binders During Acute Heide J; Wildner NH; Ackermann C; Wittner M; Marget M; Sette A; Sidney J; Jacobs T; Schulze Zur Wiesch J Front Immunol; 2019; 10():3037. PubMed ID: 32038611 [No Abstract] [Full Text] [Related]
13. Large-Scale Identification of T-Cell Epitopes Derived From Severe Acute Respiratory Syndrome Coronavirus 2 for the Development of Peptide Vaccines Against Coronavirus Disease 2019. Ma Y; Liu F; Lin T; Chen L; Jiang A; Tian G; Nielsen M; Wang M J Infect Dis; 2021 Sep; 224(6):956-966. PubMed ID: 34145459 [TBL] [Abstract][Full Text] [Related]
14. Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens. Caro-Aguilar I; Rodríguez A; Calvo-Calle JM; Guzmán F; De la Vega P; Patarroyo ME; Galinski MR; Moreno A Infect Immun; 2002 Jul; 70(7):3479-92. PubMed ID: 12065487 [TBL] [Abstract][Full Text] [Related]
15. Epitope mimicry analysis of SARS-COV-2 surface proteins and human lung proteins. Morsy S; Morsy A J Mol Graph Model; 2021 Jun; 105():107836. PubMed ID: 33588349 [TBL] [Abstract][Full Text] [Related]
16. Bioinformatics analysis of epitope-based vaccine design against the novel SARS-CoV-2. Chen HZ; Tang LL; Yu XL; Zhou J; Chang YF; Wu X Infect Dis Poverty; 2020 Jul; 9(1):88. PubMed ID: 32741372 [TBL] [Abstract][Full Text] [Related]
17. Immunoinformatics prediction of potential immunodominant epitopes from human coronaviruses and association with autoimmunity. Mathew S; Fakhroo AD; Smatti M; Al Thani AA; Yassine HM Immunogenetics; 2022 Apr; 74(2):213-229. PubMed ID: 35006282 [TBL] [Abstract][Full Text] [Related]
18. Identification of Novel Candidate Epitopes on SARS-CoV-2 Proteins for South America: A Review of HLA Frequencies by Country. Requena D; Médico A; Chacón RD; Ramírez M; Marín-Sánchez O Front Immunol; 2020; 11():2008. PubMed ID: 33013857 [TBL] [Abstract][Full Text] [Related]
19. In silico analysis for structure, function and T-cell epitopes of a hypothetical conserved (HP-C) protein coded by PVX_092425 in Plasmodium vivax. Mo J; Li J Pathog Glob Health; 2015 Mar; 109(2):61-7. PubMed ID: 25706099 [TBL] [Abstract][Full Text] [Related]
20. Immunogenic T cell epitopes of SARS-CoV-2 are recognized by circulating memory and naïve CD8 T cells of unexposed individuals. Quiros-Fernandez I; Poorebrahim M; Fakhr E; Cid-Arregui A EBioMedicine; 2021 Oct; 72():103610. PubMed ID: 34627082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]