These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34146585)

  • 1. Quantitative analysis of mitochondrial ATP synthesis.
    Randall EB; Hock M; Lopez R; Marzban B; Marshall C; Beard DA
    Math Biosci; 2021 Oct; 340():108646. PubMed ID: 34146585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated computational model of the bioenergetics of isolated lung mitochondria.
    Zhang X; Dash RK; Jacobs ER; Camara AKS; Clough AV; Audi SH
    PLoS One; 2018; 13(6):e0197921. PubMed ID: 29889855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.
    Beard DA
    PLoS Comput Biol; 2006 Sep; 2(9):e107. PubMed ID: 16978045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial energetic metabolism-some general principles.
    Mazat JP; Ransac S; Heiske M; Devin A; Rigoulet M
    IUBMB Life; 2013 Mar; 65(3):171-9. PubMed ID: 23441039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Modeling of Substrate-Dependent Mitochondrial Respiration and Bioenergetics in the Heart and Kidney Cortex and Outer Medulla.
    Sadri S; Zhang X; Audi SH; Cowley AW; Dash RK
    Function (Oxf); 2023; 4(5):zqad038. PubMed ID: 37575476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology.
    Wu F; Yang F; Vinnakota KC; Beard DA
    J Biol Chem; 2007 Aug; 282(34):24525-37. PubMed ID: 17591785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic modeling of ATP synthesis by ATP synthase and its mechanistic implications.
    Nath S; Jain S
    Biochem Biophys Res Commun; 2000 Jun; 272(3):629-33. PubMed ID: 10860805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biophysical model of the mitochondrial ATP-Mg/P(i) carrier.
    Tewari SG; Dash RK; Beard DA; Bazil JN
    Biophys J; 2012 Oct; 103(7):1616-25. PubMed ID: 23062354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation.
    Beard DA
    PLoS Comput Biol; 2005 Sep; 1(4):e36. PubMed ID: 16163394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of respiration and ATP synthesis in higher organisms: hypothesis.
    Kadenbach B
    J Bioenerg Biomembr; 1986 Feb; 18(1):39-54. PubMed ID: 3009427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems.
    Stephani A; Heinrich R
    Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation.
    Nath S
    Biophys Chem; 2016 Dec; 219():69-74. PubMed ID: 27770651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative phosphorylation: kinetic and thermodynamic correlation between electron flow, proton translocation, oxygen consumption and ATP synthesis under close to in vivo concentrations of oxygen.
    Reynafarje BD; Ferreira J
    Int J Med Sci; 2008 Jun; 5(3):143-51. PubMed ID: 18566675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of mitochondria bioenergetics using a composable chemiosmotic energy transduction rate law: theory and experimental validation.
    Chang I; Heiske M; Letellier T; Wallace D; Baldi P
    PLoS One; 2011; 6(9):e14820. PubMed ID: 21931590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial energetic metabolism: a simplified model of TCA cycle with ATP production.
    Nazaret C; Heiske M; Thurley K; Mazat JP
    J Theor Biol; 2009 Jun; 258(3):455-64. PubMed ID: 19007794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation.
    Chinopoulos C; Gerencser AA; Mandi M; Mathe K; Töröcsik B; Doczi J; Turiak L; Kiss G; Konràd C; Vajda S; Vereczki V; Oh RJ; Adam-Vizi V
    FASEB J; 2010 Jul; 24(7):2405-16. PubMed ID: 20207940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model.
    Dash RK; Li Y; Kim J; Beard DA; Saidel GM; Cabrera ME
    PLoS One; 2008 Sep; 3(9):e3168. PubMed ID: 18779864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.