These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 34146800)

  • 1. MDC-net: A new convolutional neural network for nucleus segmentation in histopathology images with distance maps and contour information.
    Liu X; Guo Z; Cao J; Tang J
    Comput Biol Med; 2021 Aug; 135():104543. PubMed ID: 34146800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MSAL-Net: improve accurate segmentation of nuclei in histopathology images by multiscale attention learning network.
    Ali H; Haq IU; Cui L; Feng J
    BMC Med Inform Decis Mak; 2022 Apr; 22(1):90. PubMed ID: 35379228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images.
    Cui Y; Zhang G; Liu Z; Xiong Z; Hu J
    Med Biol Eng Comput; 2019 Sep; 57(9):2027-2043. PubMed ID: 31346949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images.
    Jung H; Lodhi B; Kang J
    BMC Biomed Eng; 2019; 1():24. PubMed ID: 32903361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images.
    Hussain E; Mahanta LB; Das CR; Choudhury M; Chowdhury M
    Artif Intell Med; 2020 Jul; 107():101897. PubMed ID: 32828445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images.
    Lal S; Das D; Alabhya K; Kanfade A; Kumar A; Kini J
    Comput Biol Med; 2021 Jan; 128():104075. PubMed ID: 33190012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid dilation and attention residual U-Net for medical image segmentation.
    Wang Z; Zou Y; Liu PX
    Comput Biol Med; 2021 Jul; 134():104449. PubMed ID: 33993015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning.
    Gudhe NR; Kosma VM; Behravan H; Mannermaa A
    BMC Med Imaging; 2023 Oct; 23(1):162. PubMed ID: 37858043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation.
    Chen S; Zou Y; Liu PX
    Comput Biol Med; 2021 Aug; 135():104551. PubMed ID: 34157471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADR-Net: Context extraction network based on M-Net for medical image segmentation.
    Ji L; Jiang X; Gao Y; Fang Z; Cai Q; Wei Z
    Med Phys; 2020 Sep; 47(9):4254-4264. PubMed ID: 32602963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model.
    Hu Y; Guo Y; Wang Y; Yu J; Li J; Zhou S; Chang C
    Med Phys; 2019 Jan; 46(1):215-228. PubMed ID: 30374980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images.
    Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J
    Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A segmentation method combining probability map and boundary based on multiple fully convolutional networks and repetitive training.
    Yin W; Hu Y; Yi S; He J
    Phys Med Biol; 2019 Sep; 64(18):185003. PubMed ID: 30808019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient deep learning architecture with dimension-wise pyramid pooling for nuclei segmentation of histopathology images.
    Aatresh AA; Yatgiri RP; Chanchal AK; Kumar A; Ravi A; Das D; Bs R; Lal S; Kini J
    Comput Med Imaging Graph; 2021 Oct; 93():101975. PubMed ID: 34461375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAC-Net: Learning with weak and noisy labels in histopathology image segmentation.
    Guo R; Xie K; Pagnucco M; Song Y
    Med Image Anal; 2023 May; 86():102790. PubMed ID: 36878159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liver segmentation in abdominal CT images via auto-context neural network and self-supervised contour attention.
    Chung M; Lee J; Park S; Lee CE; Lee J; Shin YG
    Artif Intell Med; 2021 Mar; 113():102023. PubMed ID: 33685586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic nuclei classification, segmentation, and detection with improved deep convolutional neural networks (DCNN).
    Alom Z; Asari VK; Parwani A; Taha TM
    Diagn Pathol; 2022 Apr; 17(1):38. PubMed ID: 35436941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.