BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34146801)

  • 1. Experimental wildfire induced mobility of radiocesium in a boreal forest environment.
    Martinsson J; Pédehontaa-Hiaa G; Malmborg V; Madsen D; Rääf C
    Sci Total Environ; 2021 Oct; 792():148310. PubMed ID: 34146801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of variable oxygen concentration on the combustion derived release of radiocesium from boreal soil and peat.
    Martinsson J; Pédehontaa-Hiaa G; Madsen D; Rääf C
    Sci Total Environ; 2022 Apr; 815():152725. PubMed ID: 34974011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia.
    Zhang-Turpeinen H; Kivimäenpää M; Aaltonen H; Berninger F; Köster E; Köster K; Menyailo O; Prokushkin A; Pumpanen J
    Sci Total Environ; 2020 Apr; 711():134851. PubMed ID: 32000328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of wildfire on
    Igarashi Y; Onda Y; Wakiyama Y; Konoplev A; Zheleznyak M; Lisovyi H; Laptev G; Damiyanovich V; Samoilov D; Nanba K; Kirieiev S
    Environ Pollut; 2020 Apr; 259():113764. PubMed ID: 32040987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpreting the deposition and vertical migration characteristics of
    Kang S; Yoneda M; Shimada Y; Satta N; Fujita Y; Shin IH
    Environ Monit Assess; 2017 Aug; 189(8):384. PubMed ID: 28688068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertical distribution of radiocesium in coniferous forest soil after the Fukushima nuclear power plant accident.
    Teramage MT; Onda Y; Patin J; Kato H; Gomi T; Nam S
    J Environ Radioact; 2014 Nov; 137():37-45. PubMed ID: 24998747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world.
    Dieleman CM; Rogers BM; Potter S; Veraverbeke S; Johnstone JF; Laflamme J; Solvik K; Walker XJ; Mack MC; Turetsky MR
    Glob Chang Biol; 2020 Nov; 26(11):6062-6079. PubMed ID: 32529727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing vertical migration of
    Muto K; Atarashi-Andoh M; Matsunaga T; Koarashi J
    J Environ Radioact; 2019 Nov; 208-209():106040. PubMed ID: 31518883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management.
    Kelly J; Ibáñez TS; Santín C; Doerr SH; Nilsson MC; Holst T; Lindroth A; Kljun N
    Glob Chang Biol; 2021 Sep; 27(17):4181-4195. PubMed ID: 34028945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-fire redistribution of
    Dvornik A; Shamal N; Bachura Y; Seglin V; Korol R; Kurilenko R; Bardyukova A; Kapyltsova A
    J Environ Radioact; 2021 Feb; 227():106505. PubMed ID: 33296861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using
    Porto P; Callegari G
    Appl Radiat Isot; 2021 Jun; 172():109668. PubMed ID: 33711588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global
    Ito E; Miura S; Aoyama M; Shichi K
    J Environ Radioact; 2020 Dec; 225():106421. PubMed ID: 33032006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions.
    Koarashi J; Atarashi-Andoh M; Matsunaga T; Sato T; Nagao S; Nagai H
    Sci Total Environ; 2012 Aug; 431():392-401. PubMed ID: 22706146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing wildfires threaten historic carbon sink of boreal forest soils.
    Walker XJ; Baltzer JL; Cumming SG; Day NJ; Ebert C; Goetz S; Johnstone JF; Potter S; Rogers BM; Schuur EAG; Turetsky MR; Mack MC
    Nature; 2019 Aug; 572(7770):520-523. PubMed ID: 31435055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting wildfire particulate matter and hypothetical re-emission of radiological Cs-137 contamination incidents.
    Baker KR; Lee SD; Lemieux P; Hudson S; Murphy BN; Bash JO; Koplitz SN; Nguyen TKV; Hao WM; Baker S; Lincoln E
    Sci Total Environ; 2021 Nov; 795():148872. PubMed ID: 34328919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: a new nuclear disaster about to happen?
    Evangeliou N; Balkanski Y; Cozic A; Hao WM; Møller AP
    Environ Int; 2014 Dec; 73():346-58. PubMed ID: 25222299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident.
    Koarashi J; Nishimura S; Atarashi-Andoh M; Matsunaga T; Sato T; Nagao S
    Chemosphere; 2018 Aug; 205():147-155. PubMed ID: 29689528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-deposition early-phase migration and retention behavior of radiocesium in a litter-mineral soil system in a Japanese deciduous forest affected by the Fukushima nuclear accident.
    Koarashi J; Nishimura S; Nakanishi T; Atarashi-Andoh M; Takeuchi E; Muto K
    Chemosphere; 2016 Dec; 165():335-341. PubMed ID: 27664523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Six-year monitoring of the vertical distribution of radiocesium in three forest soils after the Fukushima Dai-ichi Nuclear Power Plant accident.
    Takahashi J; Onda Y; Hihara D; Tamura K
    J Environ Radioact; 2018 Dec; 192():172-180. PubMed ID: 29982001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model.
    Kinouchi T; Yoshimura K; Omata T
    J Environ Radioact; 2015 Jan; 139():407-415. PubMed ID: 25131841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.