These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 34146821)
1. Double Trap Interface: A novel gas interface for high throughput analysis of biomedical samples by AMS. De Maria D; Fahrni SM; Lozac'h F; Marvalin C; Walles M; Camenisch G; Wacker L; Synal HA Drug Metab Pharmacokinet; 2021 Aug; 39():100400. PubMed ID: 34146821 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of cAMS for Lozac'h F; Fahrni S; Maria D; Welte C; Bourquin J; Synal HA; Pearson D; Walles M; Camenisch G Bioanalysis; 2018 Mar; 10(5):321-339. PubMed ID: 29451392 [TBL] [Abstract][Full Text] [Related]
4. Automated combustion accelerator mass spectrometry for the analysis of biomedical samples in the low attomole range. van Duijn E; Sandman H; Grossouw D; Mocking JA; Coulier L; Vaes WH Anal Chem; 2014 Aug; 86(15):7635-41. PubMed ID: 25033319 [TBL] [Abstract][Full Text] [Related]
5. Application of liquid chromatography-accelerator mass spectrometry (LC-AMS) to evaluate the metabolic profiles of a drug candidate in human urine and plasma. Prakash C; Shaffer CL; Tremaine LM; Liberman RG; Skipper PL; Flarakos J; Tannenbaum SR Drug Metab Lett; 2007 Aug; 1(3):226-31. PubMed ID: 19356047 [TBL] [Abstract][Full Text] [Related]
6. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom. Barker J; Garner RC Rapid Commun Mass Spectrom; 1999; 13(4):285-93. PubMed ID: 10097404 [TBL] [Abstract][Full Text] [Related]
7. Development and evaluation of a multiple-plate fraction collector for sample processing: application to radioprofiling in drug metabolism studies. Barros A; Ly VT; Chando TJ; Ruan Q; Donenfeld SL; Holub DP; Christopher LJ J Pharm Biomed Anal; 2011 Apr; 54(5):979-86. PubMed ID: 21168298 [TBL] [Abstract][Full Text] [Related]
8. Analytical performance of accelerator mass spectrometry and liquid scintillation counting for detection of 14C-labeled atrazine metabolites in human urine. Gilman SD; Gee SJ; Hammock BD; Vogel JS; Haack K; Buchholz BA; Freeman SP; Wester RC; Hui X; Maibach HI Anal Chem; 1998 Aug; 70(16):3463-9. PubMed ID: 9726169 [TBL] [Abstract][Full Text] [Related]
9. A validation study comparing accelerator MS and liquid scintillation counting for analysis of 14C-labelled drugs in plasma, urine and faecal extracts. Garner RC; Barker J; Flavell C; Garner JV; Whattam M; Young GC; Cussans N; Jezequel S; Leong D J Pharm Biomed Anal; 2000 Dec; 24(2):197-209. PubMed ID: 11130199 [TBL] [Abstract][Full Text] [Related]
10. Quality of graphite target for biological/biomedical/environmental applications of 14C-accelerator mass spectrometry. Kim SH; Kelly PB; Ortalan V; Browning ND; Clifford AJ Anal Chem; 2010 Mar; 82(6):2243-52. PubMed ID: 20163100 [TBL] [Abstract][Full Text] [Related]
11. A microplate solid scintillation counter as a radioactivity detector for high performance liquid chromatography in drug metabolism: validation and applications. Bruin GJ; Waldmeier F; Boernsen KO; Pfaar U; Gross G; Zollinger M J Chromatogr A; 2006 Nov; 1133(1-2):184-94. PubMed ID: 16970958 [TBL] [Abstract][Full Text] [Related]
12. Attomole detection of 3H in biological samples using accelerator mass spectrometry: application in low-dose, dual-isotope tracer studies in conjunction with 14C accelerator mass spectrometry. Dingley KH; Roberts ML; Velsko CA; Turteltaub KW Chem Res Toxicol; 1998 Oct; 11(10):1217-22. PubMed ID: 9778319 [TBL] [Abstract][Full Text] [Related]
13. HPLC-Parallel accelerator and molecular mass spectrometry analysis of Baliu-Rodriguez D; Stewart BJ; Ognibene TJ J Chromatogr B Analyt Technol Biomed Life Sci; 2023 Feb; 1216():123590. PubMed ID: 36669256 [TBL] [Abstract][Full Text] [Related]
14. Application of a rapid and integrated analysis system (RIAS) as a high-throughput processing tool for in vitro ADME samples by liquid chromatography/tandem mass spectrometry. Luippold AH; Arnhold T; Jörg W; Krüger B; Süssmuth RD J Biomol Screen; 2011 Mar; 16(3):370-7. PubMed ID: 21335598 [TBL] [Abstract][Full Text] [Related]
15. Accelerator MS: its role as a frontline bioanalytical technique. Seymour MA Bioanalysis; 2011 Dec; 3(24):2817-23. PubMed ID: 22185281 [TBL] [Abstract][Full Text] [Related]
16. An interface for direct analysis of (14)c in nonvolatile samples by accelerator mass spectrometry. Liberman RG; Tannenbaum SR; Hughey BJ; Shefer RE; Klinkowstein RE; Prakash C; Harriman SP; Skipper PL Anal Chem; 2004 Jan; 76(2):328-34. PubMed ID: 14719879 [TBL] [Abstract][Full Text] [Related]
17. Gas chromatograph-combustion system for 14C-accelerator mass spectrometry. McIntyre CP; Sylva SP; Roberts ML Anal Chem; 2009 Aug; 81(15):6422-8. PubMed ID: 19572555 [TBL] [Abstract][Full Text] [Related]
18. Coupling of UHPLC with fast fraction collection-microplate scintillation counting and MS for radiolabeled metabolite profiling. Tong W; Chowdhury S; Wrona M; Bateman K Bioanalysis; 2012 Jun; 4(11):1299-309. PubMed ID: 22720649 [TBL] [Abstract][Full Text] [Related]
19. Mini-Review: Comprehensive Drug Disposition Knowledge Generated in the Modern Human Radiolabeled ADME Study. Spracklin DK; Chen D; Bergman AJ; Callegari E; Obach RS CPT Pharmacometrics Syst Pharmacol; 2020 Aug; 9(8):428-434. PubMed ID: 32562380 [TBL] [Abstract][Full Text] [Related]