These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 3414685)

  • 1. Primary cultures of renal epithelial cells from X-linked hypophosphatemic (Hyp) mice express defects in phosphate transport and vitamin D metabolism.
    Bell CL; Tenenhouse HS; Scriver CR
    Am J Hum Genet; 1988 Sep; 43(3):293-303. PubMed ID: 3414685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal phosphate transport and vitamin D metabolism in X-linked hypophosphatemic Gy mice: responses to phosphate deprivation.
    Tenenhouse HS; Meyer RA; Mandla S; Meyer MH; Gray RW
    Endocrinology; 1992 Jul; 131(1):51-6. PubMed ID: 1612032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidectomy.
    Meyer RA; Tenenhouse HS; Meyer MH; Klugerman AH
    J Bone Miner Res; 1989 Aug; 4(4):523-32. PubMed ID: 2816501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct demonstration of a humorally-mediated inhibition of renal phosphate transport in the Hyp mouse.
    Lajeunesse D; Meyer RA; Hamel L
    Kidney Int; 1996 Nov; 50(5):1531-8. PubMed ID: 8914019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the Hyp mutation and diet-induced hyperparathyroidism on renal parathyroid hormone- and forskolin-stimulated adenosine 3',5'-monophosphate production and brush border membrane phosphate transport.
    Tenenhouse HS; Veksler A
    Endocrinology; 1986 Mar; 118(3):1047-53. PubMed ID: 3004890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the defect in the Na(+)-phosphate transporter in vitamin D-resistant hypophosphatemic mice.
    Nakagawa N; Arab N; Ghishan FK
    J Biol Chem; 1991 Jul; 266(21):13616-20. PubMed ID: 1649826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thyroid hormones increase renal brush border membrane transport of phosphate in X-linked hypophosphatemic (Hyp) mice.
    Kiebzak GM; Dousa TP
    Endocrinology; 1985 Aug; 117(2):613-9. PubMed ID: 4017950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal 25-hydroxyvitamin D-1 alpha-hydroxylase activity and mitochondrial phosphate transport in Hyp mice.
    Carpenter TO; Shiratori T
    Am J Physiol; 1990 Dec; 259(6 Pt 1):E814-21. PubMed ID: 2260650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of phosphate by plasma membranes of the jejunum and kidney of the mouse model of hypophosphatemic vitamin D-resistant rickets.
    Nakagawa N; Ghishan FK
    Proc Soc Exp Biol Med; 1993 Jul; 203(3):328-35. PubMed ID: 8390690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The defect in transcellular transport of phosphate in the nephron is located in brush-border membranes in X-linked hypophosphatemia (Hyp mouse model).
    Tenenhouse HS; Scriver CR
    Can J Biochem; 1978 Jun; 56(6):640-6. PubMed ID: 566613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization.
    Tenenhouse HS; Werner A; Biber J; Ma S; Martel J; Roy S; Murer H
    J Clin Invest; 1994 Feb; 93(2):671-6. PubMed ID: 8113402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate transport in immortalized cell cultures from the renal proximal tubule of normal and Hyp mice: evidence that the HYP gene locus product is an extrarenal factor.
    Nesbitt T; Econs MJ; Byun JK; Martel J; Tenenhouse HS; Drezner MK
    J Bone Miner Res; 1995 Sep; 10(9):1327-33. PubMed ID: 7502704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate transport in osteoblasts from normal and X-linked hypophosphatemic mice.
    Rifas L; Dawson LL; Halstead LR; Roberts M; Avioli LV
    Calcif Tissue Int; 1994 Jun; 54(6):505-10. PubMed ID: 8082056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-phosphate transport in the kidney and intestine of the hypophosphatemic mouse.
    Nakagawa N; Ghishan FK
    Pediatr Nephrol; 1993 Dec; 7(6):815-8. PubMed ID: 7510512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of phosphate supplementation on the expression of the mutant phenotype in murine X-linked hypophosphatemic rickets.
    Tenenhouse HS; Martel J; Rubin J; Harvey N
    Bone; 1994; 15(6):677-83. PubMed ID: 7873297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosstransplantation of kidneys in normal and Hyp mice. Evidence that the Hyp mouse phenotype is unrelated to an intrinsic renal defect.
    Nesbitt T; Coffman TM; Griffiths R; Drezner MK
    J Clin Invest; 1992 May; 89(5):1453-9. PubMed ID: 1569185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of 1,25-dihydroxyvitamin D3 on phosphate homeostasis in the X-linked hypophosphatemic (Hyp) mouse.
    Tenenhouse HS; Scriver CR
    Endocrinology; 1981 Aug; 109(2):658-60. PubMed ID: 6894727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved loci on the X chromosome confer phosphate homeostasis in mice and humans.
    Scriver CR; Tenenhouse HS
    Genet Res; 1990; 56(2-3):141-52. PubMed ID: 2177024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin D metabolism and phosphate transport in developing kidney: effect of diet and mutation.
    Tenenhouse HS
    Pediatr Nephrol; 1988 Jan; 2(1):171-5. PubMed ID: 3152993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal regulation of renal vitamin D catabolism by dietary phosphate in murine X-linked hypophosphatemic rickets.
    Tenenhouse HS; Jones G
    J Clin Invest; 1990 May; 85(5):1450-5. PubMed ID: 2332500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.