These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 34147466)
41. [Influence of non-ionic surfactants on sludge dewaterability]. Hou HP; Pu WH; Shi YF; Yu WH; Fan MM; Liu H; Yang CZ; Li Y; Yang JK Huan Jing Ke Xue; 2012 Jun; 33(6):1930-5. PubMed ID: 22946178 [TBL] [Abstract][Full Text] [Related]
42. [Magnetic Fe₃O₄Microparticles Conditioning-Pressure Electro-osmotic Dewatering (MPEOD) of Sewage Sludge]. Qian X; Wang YL; Zhao L Huan Jing Ke Xue; 2016 May; 37(5):1864-72. PubMed ID: 27506042 [TBL] [Abstract][Full Text] [Related]
43. Mini-review of inventory data for the dewatering and drying of sewage sludge. Chang H; Zhao Y; Xu A; Damgaard A; Christensen TH Waste Manag Res; 2023 Jun; 41(6):1081-1088. PubMed ID: 36633153 [TBL] [Abstract][Full Text] [Related]
44. The dewatering performance and cracking-flocculation-skeleton mechanism of bioleaching-coal fly ash combined process for sewage sludge. Chen K; Sun Y; Fan J; Gu Y Chemosphere; 2022 Nov; 307(Pt 4):135994. PubMed ID: 35973485 [TBL] [Abstract][Full Text] [Related]
45. Coupling mechanism and parameter optimization of sewage sludge dewatering jointly assisted by electric field and mechanical pressure. Rao B; Su J; Xu J; Xu S; Pang H; Zhang Y; Xu P; Wu B; Lian J; Deng L Sci Total Environ; 2022 Apr; 817():152939. PubMed ID: 35016925 [TBL] [Abstract][Full Text] [Related]
46. Physical conditioning methods for sludge deep dewatering: A critical review. Liu Z; Luo F; He L; Wang S; Wu Y; Chen Z J Environ Manage; 2024 Jun; 360():121207. PubMed ID: 38788408 [TBL] [Abstract][Full Text] [Related]
47. Coupling sludge-based biochar and electrolysis for conditioning and dewatering of sewage sludge: Effect of char properties. Yu H; Zhang D; Gu L; Wen H; Zhu N Environ Res; 2022 Nov; 214(Pt 3):113974. PubMed ID: 35952734 [TBL] [Abstract][Full Text] [Related]
48. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Wu B; Dai X; Chai X Water Res; 2020 Aug; 180():115912. PubMed ID: 32422413 [TBL] [Abstract][Full Text] [Related]
49. Cationic polyacrylamide (CPAM) enhanced pressurized vertical electro-osmotic dewatering of activated sludge. Cai M; Qian Z; Xiong X; Dong C; Song Z; Shi Y; Wei Z; Jin M Sci Total Environ; 2022 Apr; 818():151787. PubMed ID: 34808190 [TBL] [Abstract][Full Text] [Related]
50. Iron powder activated peroxymonosulfate combined with waste straw to improve sludge dewaterability. Wang Q; Song L; Hui K; Song H Environ Technol; 2021 Mar; 42(8):1302-1311. PubMed ID: 31487232 [TBL] [Abstract][Full Text] [Related]
51. On the compressional rheology of fresh faeces: Evidence for improving community scale sanitation through localised dewatering. Mercer E; Usher SP; McAdam EJ; Stoner B; Bajón-Fernández Y Water Res; 2021 Oct; 204():117526. PubMed ID: 34461495 [TBL] [Abstract][Full Text] [Related]
52. Inactivation mechanisms of bacterial pathogen indicators during electro-dewatering of activated sludge biosolids. Navab Daneshmand T; Beton R; Hill RJ; Gehr R; Frigon D Water Res; 2012 Sep; 46(13):3999-4008. PubMed ID: 22677501 [TBL] [Abstract][Full Text] [Related]
53. Optimizing sludge dewatering with a combined conditioner of Fenton's reagent and cationic surfactant. He DQ; Chen JY; Bao B; Pan XL; Li J; Qian C; Yu HQ J Environ Sci (China); 2020 Feb; 88():21-30. PubMed ID: 31862063 [TBL] [Abstract][Full Text] [Related]
54. Evaluation of conceptual model and predictors of faecal sludge dewatering performance in Senegal and Tanzania. Ward BJ; Traber J; Gueye A; Diop B; Morgenroth E; Strande L Water Res; 2019 Dec; 167():115101. PubMed ID: 31563707 [TBL] [Abstract][Full Text] [Related]
55. Application of a cellulose filter aid in municipal sewage sludge dewatering and drying: Jar, pilot, and factory scale. Shi Q; Lu Y; Guo W; Wang T; Zhu Q; Zhang Y; Wang H; Li F; Xu T; Li C Water Environ Res; 2020 Apr; 92(4):495-503. PubMed ID: 31587441 [TBL] [Abstract][Full Text] [Related]
56. Investigation on the variations of sludge water holding capacity of electro-dewatering process. Sha L; Yu X; Zhang Y; Jiang Q; Liu X; Wu Z; Zhang S Environ Res; 2020 Nov; 190():110011. PubMed ID: 32763282 [TBL] [Abstract][Full Text] [Related]
57. Supercritical carbon dioxide drying of municipal sewage sludge - Novel waste-to-energy valorization pathway. Aggarwal S; Hakovirta M J Environ Manage; 2021 May; 285():112148. PubMed ID: 33588163 [TBL] [Abstract][Full Text] [Related]
58. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production. Yu L; Yu Y; Jiang W; Wei H; Sun C Environ Sci Pollut Res Int; 2015 Feb; 22(4):2599-609. PubMed ID: 25192669 [TBL] [Abstract][Full Text] [Related]
59. Biodegradation of volatile solids and water mass balance of bio-drying sewage sludge after electro-dewatering pretreatment. Li Q; Zhi S; Yu X; Li Y; Guo H; Yang Z; Zhang S Waste Manag; 2019 May; 91():9-19. PubMed ID: 31203947 [TBL] [Abstract][Full Text] [Related]
60. Comprehensive effects of grain-size modification of electrolytic manganese residue on deep dehydration performance and microstructure of sludge. Ziyao S; Xiaorong Z; Zaiqian W; Yihan H; Yimin L; Xuquan H J Environ Manage; 2023 Jan; 326(Pt B):116793. PubMed ID: 36455369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]