These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3414780)

  • 21. Deuterium oxide (heavy water) accelerates actin assembly in vitro and changes microfilament distribution in cultured cells.
    Omori H; Kuroda M; Naora H; Takeda H; Nio Y; Otani H; Tamura K
    Eur J Cell Biol; 1997 Nov; 74(3):273-80. PubMed ID: 9402475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in the G/total actin ratio and microfilament stability between normal and malignant human keratinocytes.
    Katsantonis J; Tosca A; Koukouritaki SB; Theodoropoulos PA; Gravanis A; Stournaras C
    Cell Biochem Funct; 1994 Dec; 12(4):267-74. PubMed ID: 7834816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determining the differences in actin binding by human ADF and cofilin.
    Yeoh S; Pope B; Mannherz HG; Weeds A
    J Mol Biol; 2002 Jan; 315(4):911-25. PubMed ID: 11812157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Actin polymerization and pseudopod reorganization accompany anti-CD3-induced growth arrest in Jurkat T cells.
    Parsey MV; Lewis GK
    J Immunol; 1993 Aug; 151(4):1881-93. PubMed ID: 7688389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth.
    She BR; Liou GG; Lin-Chao S
    Exp Cell Res; 2002 Feb; 273(1):34-44. PubMed ID: 11795944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of cytoskeletal reorganization stimulates actin and tubulin syntheses during injury-induced cell migration in the corneal endothelium.
    Gordon SR; Buxar RM
    J Cell Biochem; 1997 Dec; 67(3):409-21. PubMed ID: 9361195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZO-1 reorganization and myofibroblast transformation of corneal endothelial cells after freeze injury in the cat.
    Petroll WM; Barry-Lane PA; Cavanagh HD; Jester JV
    Exp Eye Res; 1997 Feb; 64(2):257-67. PubMed ID: 9176060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endogenous regulation of 2-deoxyglucose uptake in C6 glioma cells correlates with cytoskeleton-mediated changes of surface morphology.
    Lange K; Brandt U; Keller K; Zimmermann B
    J Cell Physiol; 1989 Jul; 140(1):29-43. PubMed ID: 2738110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of endothelial cell shape change in oxidant injury.
    Hinshaw DB; Burger JM; Armstrong BC; Hyslop PA
    J Surg Res; 1989 Apr; 46(4):339-49. PubMed ID: 2704230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenine nucleotide metabolism and cell fate after oxidant exposure of rat cortical neurons: effects of inhibition of poly(ADP-ribose) polymerase.
    Aito H; Aalto KT; Raivio KO
    Brain Res; 2004 Jul; 1013(1):117-24. PubMed ID: 15196974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen peroxide-induced cytoskeletal rearrangement in cultured pulmonary endothelial cells.
    Zhao Y; Davis HW
    J Cell Physiol; 1998 Mar; 174(3):370-9. PubMed ID: 9462699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Actin microfilaments dynamics in African green monkey renal cell line (Vero) during cultivation.
    Gagheş A; Babeş L; Orăşanu M; Codău ML; Teletin N
    Roum Arch Microbiol Immunol; 1993; 52(2):89-100. PubMed ID: 8186459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of delta-9-tetrahydrocannabinol on actin microfilaments.
    Kiosses BW; Tahir SK; Kalnins VI; Zimmerman AM
    Cytobios; 1990; 63(252):23-9. PubMed ID: 2175259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytoskeleton of the Drosophila egg chamber: new observations on microfilament distribution during oocyte growth.
    Riparbelli MG; Callaini G
    Cell Motil Cytoskeleton; 1995; 31(4):298-306. PubMed ID: 7553916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of caldesmon in the regulation of endothelial cytoskeleton and migration.
    Mirzapoiazova T; Kolosova IA; Romer L; Garcia JG; Verin AD
    J Cell Physiol; 2005 Jun; 203(3):520-8. PubMed ID: 15521070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Saccharomyces cerevisiae, the effect of H2O2 on ATP, but not on glyceraldehyde-3-phosphate dehydrogenase, depends on the glucose concentration.
    Osório H; Moradas-Ferreira P; Günther Sillero MA; Sillero A
    Arch Microbiol; 2004 Mar; 181(3):231-6. PubMed ID: 14735298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytochalasins induce actin polymerization in human leukocytes.
    Rao KM; Padmanabhan J; Cohen HJ
    Cell Motil Cytoskeleton; 1992; 21(1):58-64. PubMed ID: 1540992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D1 cells after oxidant injury.
    Spragg RG; Hinshaw DB; Hyslop PA; Schraufstätter IU; Cochrane CG
    J Clin Invest; 1985 Oct; 76(4):1471-6. PubMed ID: 2997279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors.
    Williams DS; Linberg KA; Vaughan DK; Fariss RN; Fisher SK
    J Comp Neurol; 1988 Jun; 272(2):161-76. PubMed ID: 3397406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of normal differentiation of myeloid leukemic cells. X. Glucose utilization, cellular ATP and associated membrane changes in D+ and D- cells.
    Vlodavsky I; Fibach E; Sachs L
    J Cell Physiol; 1975 Dec; 87(2):167-77. PubMed ID: 1061711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.