These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34147834)

  • 1. Separation of labeled isomeric oligosaccharides by hydrophilic interaction liquid chromatography - the role of organic solvent in manipulating separation selectivity of the amide stationary phase.
    Moravcová D; Čmelík R; Křenková J
    J Chromatogr A; 2021 Aug; 1651():462303. PubMed ID: 34147834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of isocratic retention models for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides.
    Česla P; Vaňková N; Křenková J; Fischer J
    J Chromatogr A; 2016 Mar; 1438():179-88. PubMed ID: 26905882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A polyacrylamide-based silica stationary phase for the separation of carbohydrates using alcohols as the weak eluent in hydrophilic interaction liquid chromatography.
    Cai J; Cheng L; Zhao J; Fu Q; Jin Y; Ke Y; Liang X
    J Chromatogr A; 2017 Nov; 1524():153-159. PubMed ID: 29030034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography.
    Bennett R; Olesik SV
    Anal Chim Acta; 2017 Apr; 960():151-159. PubMed ID: 28193358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided gradient optimization of hydrophilic interaction liquid chromatographic separations of intact proteins and protein glycoforms.
    van Schaick G; Pirok BWJ; Haselberg R; Somsen GW; Gargano AFG
    J Chromatogr A; 2019 Aug; 1598():67-76. PubMed ID: 31104847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry.
    Martín-Ortiz A; Salcedo J; Barile D; Bunyatratchata A; Moreno FJ; Martin-García I; Clemente A; Sanz ML; Ruiz-Matute AI
    J Chromatogr A; 2016 Jan; 1428():143-53. PubMed ID: 26427327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophilic interaction liquid chromatography coupled to mass spectrometry for the characterization of prebiotic galactooligosaccharides.
    Hernández-Hernández O; Calvillo I; Lebrón-Aguilar R; Moreno FJ; Sanz ML
    J Chromatogr A; 2012 Jan; 1220():57-67. PubMed ID: 22189297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic study on the high-selectivity enantioseparation of amino acids using a chiral crown ether-bonded stationary phase and acidic, highly organic mobile phase by liquid chromatography/time-of-flight mass spectrometry.
    Konya Y; Taniguchi M; Furuno M; Nakano Y; Tanaka N; Fukusaki E
    J Chromatogr A; 2018 Nov; 1578():35-44. PubMed ID: 30340763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the retention processes of phthalate metabolites on different liquid chromatography stationary phases for the development of improved separation methods.
    Gómara B; Lebrón-Aguilar R; González MJ; Quintanilla-López JE
    J Chromatogr A; 2015 Dec; 1423():86-95. PubMed ID: 26553955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a silicon oxynitride hydrophilic interaction liquid chromatography column in saccharide and glycoside separations.
    Wan H; Sheng Q; Zhong H; Guo X; Fu Q; Liu Y; Xue X; Liang X
    J Sep Sci; 2015 May; 38(8):1271-6. PubMed ID: 25631584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of gradient retention data for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides.
    Vaňková N; Česla P
    J Chromatogr A; 2017 Feb; 1485():82-89. PubMed ID: 28108080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of hydrophilic ion-pairing reagents for the separation of nucleosides and nucleotide mono-, di- and triphosphates.
    Mateos-Vivas M; Rodríguez-Gonzalo E; García-Gómez D; Carabias-Martínez R
    J Chromatogr A; 2015 Oct; 1414():129-37. PubMed ID: 26341591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid.
    Anumula KR; Dhume ST
    Glycobiology; 1998 Jul; 8(7):685-94. PubMed ID: 9621109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced fluidity liquid chromatography for hydrophilic interaction separation of nucleosides.
    Treadway JW; Philibert GS; Olesik SV
    J Chromatogr A; 2011 Sep; 1218(35):5897-902. PubMed ID: 21236439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.
    Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophilic interaction liquid chromatography in the speciation analysis of selenium.
    Sentkowska A; Pyrzynska K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Feb; 1074-1075():8-15. PubMed ID: 29329094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling pneumococcal type 3-derived oligosaccharides by high resolution liquid chromatography-tandem mass spectrometry.
    Li G; Li L; Xue C; Middleton D; Linhardt RJ; Avci FY
    J Chromatogr A; 2015 Jun; 1397():43-51. PubMed ID: 25913329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment.
    Alagesan K; Khilji SK; Kolarich D
    Anal Bioanal Chem; 2017 Jan; 409(2):529-538. PubMed ID: 27909778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode.
    Aturki Z; D'Orazio G; Rocco A; Si-Ahmed K; Fanali S
    Anal Chim Acta; 2011 Jan; 685(1):103-10. PubMed ID: 21168557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.