These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3414786)

  • 1. Animal model of human disease. Multiple myeloma.
    Radl J; Croese JW; Zurcher C; Van den Enden-Vieveen MH; de Leeuw AM
    Am J Pathol; 1988 Sep; 132(3):593-7. PubMed ID: 3414786
    [No Abstract]   [Full Text] [Related]  

  • 2. [Experimental animal models of multiple myeloma].
    Miyakawa Y
    Nihon Rinsho; 2007 Dec; 65(12):2211-7. PubMed ID: 18069262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of animal models in multiple myeloma.
    Libouban H
    Morphologie; 2015 Jun; 99(325):63-72. PubMed ID: 25898798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental plasmacytomas in relation to human multiple myeloma.
    Azar HA
    Ann Clin Lab Sci; 1974; 4(3):157-63. PubMed ID: 4825619
    [No Abstract]   [Full Text] [Related]  

  • 5. The 5TMM series: a useful in vivo mouse model of human multiple myeloma.
    Asosingh K; Radl J; Van Riet I; Van Camp B; Vanderkerken K
    Hematol J; 2000; 1(5):351-6. PubMed ID: 11920212
    [No Abstract]   [Full Text] [Related]  

  • 6. Adoptive B-cell transfer mouse model of human myeloma.
    Tompkins VS; Rosean TR; Holman CJ; DeHoedt C; Olivier AK; Duncan KM; Jing X; Foor SD; Acevedo MR; Walsh SA; Tricot G; Zhan F; Janz S
    Leukemia; 2016 Apr; 30(4):962-6. PubMed ID: 26202932
    [No Abstract]   [Full Text] [Related]  

  • 7. Erythropoietin induces tumor regression and antitumor immune responses in murine myeloma models.
    Mittelman M; Neumann D; Peled A; Kanter P; Haran-Ghera N
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5181-6. PubMed ID: 11309490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of interleukin-6 in the pathogenesis of murine plasmacytoma and human multiple myeloma.
    Pattengale PK
    Am J Pathol; 1997 Sep; 151(3):647-9. PubMed ID: 9284811
    [No Abstract]   [Full Text] [Related]  

  • 9. The 5T2MM murine model of multiple myeloma: maintenance and analysis.
    Vanderkerken K; Asosingh K; Willems A; De Raeve H; Couck P; Gorus F; Croucher P; Van Camp B
    Methods Mol Med; 2005; 113():191-205. PubMed ID: 15968104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of renal lesions in C57BL/KaLwRij mice with advanced myeloma due to 5T2MM cells.
    Libouban H; Onno C; Pascaretti-Grizon F; Gallois Y; Moreau MF; Baslé MF; Chappard D
    Leuk Res; 2006 Nov; 30(11):1371-5. PubMed ID: 16814861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed in vivo disease progression is associated with high proportions of CD45+ myeloma cells in the 5T2MM murine model.
    Asosingh K; Willems A; Van Riet I; Van Camp B; Vanderkerken K
    Cancer Res; 2003 Jun; 63(12):3019-20. PubMed ID: 12810619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo models of multiple myeloma (MM).
    Sanchez E; Chen H; Berenson JR
    Biochem Pharmacol; 2014 Jun; 89(3):313-20. PubMed ID: 24704250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of 5T33 myeloma cells in the C57BL/KaLwRij mouse: establishment of a new syngeneic murine model of multiple myeloma.
    Alici E; Konstantinidis KV; Aints A; Dilber MS; Abedi-Valugerdi M
    Exp Hematol; 2004 Nov; 32(11):1064-72. PubMed ID: 15539084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma.
    Vanderkerken K; Medicherla S; Coulton L; De Raeve H; Willems A; Lawson M; Van Camp B; Protter AA; Higgins LS; Menu E; Croucher PI
    Cancer Res; 2007 May; 67(10):4572-7. PubMed ID: 17495322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of idiotypic protein primed allogeneic marrow grafts elicits potent graft-versus-myeloma effects in mice.
    Zeis M; Steinmann J; Petrela E; Hartung G; Schmitz N; Uharek L
    Bone Marrow Transplant; 2001 Feb; 27(3):279-85. PubMed ID: 11277175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse plasmacytoma: an experimental model of human multiple myeloma.
    Gadó K; Silva S; Pálóczi K; Domján G; Falus A
    Haematologica; 2001 Mar; 86(3):227-36. PubMed ID: 11255268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of current murine models of multiple myeloma used to assess the efficacy of therapeutic agents on tumour growth and bone disease.
    Paton-Hough J; Chantry AD; Lawson MA
    Bone; 2015 Aug; 77():57-68. PubMed ID: 25868800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging and proliferative homeostasis: monoclonal gammopathies in mice and men.
    Radl J
    Lab Anim Sci; 1992 Apr; 42(2):138-41. PubMed ID: 1318444
    [No Abstract]   [Full Text] [Related]  

  • 19. Nonirradiated NOD/SCID-human chimeric animal model for primary human multiple myeloma: a potential in vivo culture system.
    Huang SY; Tien HF; Su FH; Hsu SM
    Am J Pathol; 2004 Feb; 164(2):747-56. PubMed ID: 14742278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythropoietin has an anti-myeloma effect - a hypothesis based on a clinical observation supported by animal studies.
    Mittelman M; Zeidman A; Kanter P; Katz O; Oster H; Rund D; Neumann D
    Eur J Haematol; 2004 Mar; 72(3):155-65. PubMed ID: 14962233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.