BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34147928)

  • 41. Nanofabrication of mechano-bactericidal surfaces.
    Linklater DP; Juodkazis S; Ivanova EP
    Nanoscale; 2017 Nov; 9(43):16564-16585. PubMed ID: 29082999
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of Antimicrobial Activities of Nanoparticles and Nanostructured Surfaces In Vitro.
    Holt-Torres PS; Chen Y; Liu HH
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37154570
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trends in Bactericidal Nanostructured Surfaces: An Analytical Perspective.
    Ishantha Senevirathne SWMA; Hasan J; Mathew A; Jaggessar A; Yarlagadda PKDV
    ACS Appl Bio Mater; 2021 Oct; 4(10):7626-7642. PubMed ID: 35006714
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomimetic Nanopillar Silicon Surfaces Rupture Fungal Spores.
    Linklater DP; Le PH; Aburto-Medina A; Crawford RJ; Maclaughlin S; Juodkazis S; Ivanova EP
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674814
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bactericidal performance of nanostructured surfaces by fluorocarbon plasma.
    Vassallo E; Pedroni M; Silvetti T; Morandi S; Toffolatti S; Angella G; Brasca M
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():117-121. PubMed ID: 28866145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacteria Death and Osteoblast Metabolic Activity Correlated to Hydrothermally Synthesised TiO₂ Surface Properties.
    Jaggessar A; Mathew A; Tesfamichael T; Wang H; Yan C; Yarlagadda PK
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30934764
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanodarts, nanoblades, and nanospikes: Mechano-bactericidal nanostructures and where to find them.
    Lin N; Berton P; Moraes C; Rogers RD; Tufenkji N
    Adv Colloid Interface Sci; 2018 Feb; 252():55-68. PubMed ID: 29317019
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The susceptibility of Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 cells to the bactericidal action of nanostructured Calopteryx haemorrhoidalis damselfly wing surfaces.
    Truong VK; Geeganagamage NM; Baulin VA; Vongsvivut J; Tobin MJ; Luque P; Crawford RJ; Ivanova EP
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4683-4690. PubMed ID: 28246886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation.
    Gao S; Liu W; Liu Z
    Nanoscale; 2019 Jan; 11(2):459-466. PubMed ID: 30325374
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacterial Envelope Damage Inflicted by Bioinspired Nanostructures Grown in a Hydrogel.
    Arias SL; Devorkin J; Spear JC; Civantos A; Allain JP
    ACS Appl Bio Mater; 2020 Nov; 3(11):7974-7988. PubMed ID: 35019537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antibacterial Au nanostructured surfaces.
    Wu S; Zuber F; Brugger J; Maniura-Weber K; Ren Q
    Nanoscale; 2016 Feb; 8(5):2620-5. PubMed ID: 26648134
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulations of Protein Adsorption on Nanostructured Surfaces.
    Manzi BM; Werner M; Ivanova EP; Crawford RJ; Baulin VA
    Sci Rep; 2019 Mar; 9(1):4694. PubMed ID: 30886353
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bactericidal nanopatterns generated by block copolymer self-assembly.
    Fontelo R; Soares da Costa D; Reis RL; Novoa-Carballal R; Pashkuleva I
    Acta Biomater; 2020 Aug; 112():174-181. PubMed ID: 32525051
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pristine and Antibiotic-Loaded Nanosheets/Nanoneedles-Based Boron Nitride Films as a Promising Platform to Suppress Bacterial and Fungal Infections.
    Gudz KY; Permyakova ES; Matveev AT; Bondarev AV; Manakhov AM; Sidorenko DA; Filippovich SY; Brouchkov AV; Golberg DV; Ignatov SG; Shtansky DV
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42485-42498. PubMed ID: 32845601
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating.
    Hizal F; Zhuk I; Sukhishvili S; Busscher HJ; van der Mei HC; Choi CH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20304-13. PubMed ID: 26305913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanopatterned polymer surfaces with bactericidal properties.
    Dickson MN; Liang EI; Rodriguez LA; Vollereaux N; Yee AF
    Biointerphases; 2015 Jun; 10(2):021010. PubMed ID: 26077558
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro evaluation of contact-active antibacterial efficacy of Ti-Al-V alloys coated with the antimicrobial agent PHMB.
    Hornschuh M; Zwicker P; Schmidt T; Kramer A; Müller G
    Acta Biomater; 2020 Apr; 106():376-386. PubMed ID: 32068136
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancing the Bactericidal Efficacy of Nanostructured Multifunctional Surface Using an Ultrathin Metal Coating.
    Tripathy A; Sreedharan S; Bhaskarla C; Majumdar S; Peneti SK; Nandi D; Sen P
    Langmuir; 2017 Nov; 33(44):12569-12579. PubMed ID: 29017327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechano-Bactericidal Titanium Surfaces for Bone Tissue Engineering.
    Clainche TL; Linklater D; Wong S; Le P; Juodkazis S; Guével XL; Coll JL; Ivanova EP; Martel-Frachet V
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48272-48283. PubMed ID: 33054152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.