These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assa-foetida oleo-gum-resin extract in streptozotocin-induced diabetic wistar rats. Latifi E; Mohammadpour AA; H BF; Nourani H Biomed Pharmacother; 2019 Feb; 110():197-202. PubMed ID: 30471513 [TBL] [Abstract][Full Text] [Related]
24. Hypoglycemic activity of leaf organic extracts from Smallanthus sonchifolius: Constituents of the most active fractions. Genta SB; Cabrera WM; Mercado MI; Grau A; Catalán CA; Sánchez SS Chem Biol Interact; 2010 Apr; 185(2):143-52. PubMed ID: 20211156 [TBL] [Abstract][Full Text] [Related]
25. Exploring the Dual Inhibitory Activity of Novel Anthranilic Acid Derivatives towards α-Glucosidase and Glycogen Phosphorylase Antidiabetic Targets: Design, In Vitro Enzyme Assay, and Docking Studies. Ihmaid S Molecules; 2018 May; 23(6):. PubMed ID: 29844263 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of in-vitro and in-vivo antidiabetic, antilipidemic and antioxidant potentials of aqueous root extract of Strophanthus hispidus DC (Apocynaceae). Fageyinbo MS; Akindele AJ; Adenekan SO; Agbaje EO J Complement Integr Med; 2019 Jul; 16(3):. PubMed ID: 31318693 [TBL] [Abstract][Full Text] [Related]
27. Effect of Glycosin alkaloid from Rhizophora apiculata in non-insulin dependent diabetic rats and its mechanism of action: In vivo and in silico studies. Selvaraj G; Kaliamurthi S; Thirugnasambandan R Phytomedicine; 2016 Jun; 23(6):632-40. PubMed ID: 27161404 [TBL] [Abstract][Full Text] [Related]
28. Exploring of novel 4-hydroxy-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxide derivative as a dual inhibitor of α-glucosidase and α-amylase: Molecular docking, biochemical, enzyme kinetic and in-vivo mouse model study. Taj S; Ahmad M; Ashfaq UA Int J Biol Macromol; 2022 May; 207():507-521. PubMed ID: 35276296 [TBL] [Abstract][Full Text] [Related]
31. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Rasouli H; Hosseini-Ghazvini SM; Adibi H; Khodarahmi R Food Funct; 2017 May; 8(5):1942-1954. PubMed ID: 28470323 [TBL] [Abstract][Full Text] [Related]
32. In Vitro Alpha-Amylase and Alpha-Glucosidase Inhibitory Activity and In Vivo Antidiabetic Activity of Mechchate H; Es-Safi I; Louba A; Alqahtani AS; Nasr FA; Noman OM; Farooq M; Alharbi MS; Alqahtani A; Bari A; Bekkari H; Bousta D Molecules; 2021 Jan; 26(2):. PubMed ID: 33430115 [No Abstract] [Full Text] [Related]
33. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α-amylase: Evidence from an in vivo and in silico studies. Rehman K; Chohan TA; Waheed I; Gilani Z; Akash MSH J Cell Biochem; 2019 Jan; 120(1):425-438. PubMed ID: 30191607 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of α-glucosidase by Cyclocarya paliurus based on HPLC fingerprinting integrated with molecular docking and molecular dynamics. Chai SS; Cai JH; Luo JH; Zhao BX; Wu ZM; Liu XT; Tian H; Zeng Y Biomed Chromatogr; 2022 Sep; 36(9):e5429. PubMed ID: 35712886 [TBL] [Abstract][Full Text] [Related]
35. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by Oroxylum indicum stem bark in STZ induced diabetic rats. Singh J; Kakkar P Food Chem Toxicol; 2013 Dec; 62():722-31. PubMed ID: 24140466 [TBL] [Abstract][Full Text] [Related]
36. Exploration of human pancreatic alpha-amylase inhibitors from Physalis peruviana for the treatment of type 2 diabetes. Tiwari VP; Dubey A; Al-Shehri M; Tripathi IP J Biomol Struct Dyn; 2024; 42(2):1031-1046. PubMed ID: 37545158 [TBL] [Abstract][Full Text] [Related]
37. Antioxidant, anti-inflammatory and hypoglycemic effects of Fagonia olivieri DC on STZ-nicotinamide induced diabetic rats - In vivo and in vitro study. Rashid U; Khan MR; Sajid M J Ethnopharmacol; 2019 Oct; 242():112038. PubMed ID: 31247238 [TBL] [Abstract][Full Text] [Related]
38. Pharmacological evaluation of continentalic acid for antidiabetic potential. Liaquat I; Khan AU; Khan S Biomed Pharmacother; 2021 Jun; 138():111411. PubMed ID: 33711550 [TBL] [Abstract][Full Text] [Related]
39. Antinociceptive effect of chlorogenic acid in rats with painful diabetic neuropathy. Bagdas D; Ozboluk HY; Cinkilic N; Gurun MS J Med Food; 2014 Jun; 17(6):730-2. PubMed ID: 24611441 [TBL] [Abstract][Full Text] [Related]
40. Liuwei Dihuang exhibits antidiabetic effects through inhibiting α-amylase and α-glucosidase. Wang H; Gang H; Zhou S; Liu L; Ding T; Gui Z; Chu W Med Sci (Paris); 2018 Oct; 34 Focus issue F1():4-7. PubMed ID: 30403167 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]