These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 34148038)

  • 1. Lipid Core Burden Index Assessed by Near-Infrared Spectroscopy of Symptomatic Carotid Plaques: Association with Magnetic Resonance T1-Weighted Imaging.
    Nakagawa I; Kotsugi M; Park H; Yokoyama S; Furuta T; Nakase K; Okamoto A; Myouchin K; Yamada S; Nakase H
    Cerebrovasc Dis; 2021; 50(5):597-604. PubMed ID: 34148038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared spectroscopy carotid plaque characteristics and cerebral embolism in carotid artery stenting.
    Nakagawa I; Kotsugi M; Park HS; Furuta T; Sato F; Myochin K; Nishimura F; Yamada S; Motoyama Y; Nakase H
    EuroIntervention; 2021 Sep; 17(7):599-606. PubMed ID: 33283761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thin Calcification Predicts Lipid Component in Carotid Plaque-Relationship Between Lipid Distribution and Thin Calcification.
    Kotsugi M; Nakagawa I; Sasaki H; Okamoto A; Nakase K; Maeoka R; Yokoyama S; Yamada S; Nakase H
    World Neurosurg; 2024 Mar; 183():e715-e721. PubMed ID: 38191057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared spectroscopy combined with intravascular ultrasound in carotid arteries.
    Štěchovský C; Hájek P; Horváth M; Špaček M; Veselka J
    Int J Cardiovasc Imaging; 2016 Jan; 32(1):181-8. PubMed ID: 26044524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of stenting on the near-infrared spectroscopy-derived lipid core burden index of carotid artery plaque.
    Štěchovský C; Hájek P; Horváth M; Veselka J
    EuroIntervention; 2019 Jun; 15(3):e289-e296. PubMed ID: 29957596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of intraplaque hemorrhage and lipid rich necrotic core.
    Yamada K; Song Y; Hippe DS; Sun J; Dong L; Xu D; Ferguson MS; Chu B; Hatsukami TS; Chen M; Zhou C; Yuan C
    J Cardiovasc Magn Reson; 2012 Nov; 14(1):81. PubMed ID: 23194180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ipsilateral plaques display higher T1 signals than contralateral plaques in recently symptomatic patients with bilateral carotid intraplaque hemorrhage.
    Wang X; Sun J; Zhao X; Hippe DS; Hatsukami TS; Liu J; Li R; Canton G; Song Y; Yuan C;
    Atherosclerosis; 2017 Feb; 257():78-85. PubMed ID: 28110259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-layered stents reduce cerebral embolism compared with first-generation stents during carotid stenting of high lipid core plaque lesions.
    Nakagawa I; Kotsugi M; Yokoyama S; Maeoka R; Furuta T; Tanaka H; Takeshima Y; Matsuda R; Yamada S; Nakase H
    J Neurointerv Surg; 2023 Dec; 16(1):67-72. PubMed ID: 36944492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential role of IDEAL MRI for identification of lipids and hemorrhage in carotid artery plaques.
    Khosa F; Clough RE; Wang X; Madhuranthakam AJ; Greenman RL
    Magn Reson Imaging; 2018 Jun; 49():25-31. PubMed ID: 29217492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary High-Intensity Plaques at T1-weighted MRI in Stable Coronary Artery Disease: Comparison with Near-Infrared Spectroscopy Intravascular US.
    Sato S; Matsumoto H; Li D; Ohya H; Mori H; Sakai K; Ogura K; Oishi Y; Masaki R; Tanaka H; Kondo S; Tsujita H; Tsukamoto S; Isodono K; Kitamura R; Komori Y; Yoshii N; Sato I; Christodoulou AG; Xie Y; Shinke T
    Radiology; 2022 Mar; 302(3):557-565. PubMed ID: 34904874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between coronary high-intensity plaques on T1-weighted imaging by cardiovascular magnetic resonance and vulnerable plaque features by near-infrared spectroscopy and intravascular ultrasound: a prospective cohort study.
    Fukase T; Dohi T; Fujimoto S; Nishio R; Nozaki YO; Kudo A; Takeuchi M; Takahashi N; Chikata Y; Endo H; Kawaguchi YO; Doi S; Nishiyama H; Hiki M; Okai I; Iwata H; Yokoyama T; Okazaki S; Miyauchi K; Daida H; Li D; Xie Y; Minamino T
    J Cardiovasc Magn Reson; 2023 Jan; 25(1):4. PubMed ID: 36710360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability.
    Brinjikji W; Huston J; Rabinstein AA; Kim GM; Lerman A; Lanzino G
    J Neurosurg; 2016 Jan; 124(1):27-42. PubMed ID: 26230478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction.
    Madder RD; Goldstein JA; Madden SP; Puri R; Wolski K; Hendricks M; Sum ST; Kini A; Sharma S; Rizik D; Brilakis ES; Shunk KA; Petersen J; Weisz G; Virmani R; Nicholls SJ; Maehara A; Mintz GS; Stone GW; Muller JE
    JACC Cardiovasc Interv; 2013 Aug; 6(8):838-46. PubMed ID: 23871513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disparity between angiographic coronary lesion complexity and lipid core plaques assessed by near-infrared spectroscopy.
    Zynda TK; Thompson CD; Hoang KC; Seto AH; Glovaci D; Wong ND; Patel PM; Kern MJ
    Catheter Cardiovasc Interv; 2013 Feb; 81(3):529-37. PubMed ID: 22532512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-existing intracranial and extracranial carotid artery atherosclerotic plaques and recurrent stroke risk: a three-dimensional multicontrast cardiovascular magnetic resonance study.
    Xu Y; Yuan C; Zhou Z; He L; Mi D; Li R; Cui Y; Wang Y; Wang Y; Liu G; Zheng Z; Zhao X
    J Cardiovasc Magn Reson; 2016 Dec; 18(1):90. PubMed ID: 27908279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N
    Eto A; Sakata N; Nagai R; Shirakawa JI; Inoue R; Kiyomi F; Nii K; Aikawa H; Iko M; Tsutsumi M; Sakamoto K; Hiraoka F; Mitsutake T; Hanada H; Kazekawa K
    J Stroke Cerebrovasc Dis; 2017 Jun; 26(6):1341-1348. PubMed ID: 28314627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal of Carotid Intraplaque Hemorrhage on MR T1-Weighted Imaging: Association with Acute Cerebral Infarct.
    Yang D; Liu Y; Han Y; Li D; Wang W; Li R; Yuan C; Zhao X
    AJNR Am J Neuroradiol; 2020 May; 41(5):836-843. PubMed ID: 32273265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carotid artery stenosis with a high-intensity signal plaque on time-of-flight magnetic resonance angiography and association with evidence of intraplaque hypoxia.
    Ogata A; Kawashima M; Wakamiya T; Nishihara M; Masuoka J; Nakahara Y; Ebashi R; Inoue K; Takase Y; Irie H; Abe T
    J Neurosurg; 2017 Jun; 126(6):1873-1878. PubMed ID: 27367236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the Association of Carotid Atherosclerotic Plaque MRI Features and Silent Stroke After Carotid Endarterectomy.
    Huo R; Yuan W; Xu H; Yang D; Qiao H; Han H; Wang T; Liu Y; Yuan H; Zhao X
    J Magn Reson Imaging; 2024 Jul; 60(1):138-149. PubMed ID: 38018669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque.
    Saito H; Kuroda S; Hirata K; Magota K; Shiga T; Tamaki N; Yoshida D; Terae S; Nakayama N; Houkin K
    Cerebrovasc Dis; 2013; 35(4):370-7. PubMed ID: 23635390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.