These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34148300)

  • 1. ABCMETAapp: R shiny application for simulation-based estimation of mean and standard deviation for meta-analysis via approximate Bayesian computation.
    Kwon D; Reddy RRS; Reis IM
    Res Synth Methods; 2021 Nov; 12(6):842-848. PubMed ID: 34148300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation-based estimation of mean and standard deviation for meta-analysis via Approximate Bayesian Computation (ABC).
    Kwon D; Reis IM
    BMC Med Res Methodol; 2015 Aug; 15():61. PubMed ID: 26264850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the sample mean and standard deviation from order statistics and sample size in meta-analysis.
    Cai S; Zhou J; Pan J
    Stat Methods Med Res; 2021 Dec; 30(12):2701-2719. PubMed ID: 34668458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dealing with missing standard deviation and mean values in meta-analysis of continuous outcomes: a systematic review.
    Weir CJ; Butcher I; Assi V; Lewis SC; Murray GD; Langhorne P; Brady MC
    BMC Med Res Methodol; 2018 Mar; 18(1):25. PubMed ID: 29514597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximate Bayesian Computation for infectious disease modelling.
    Minter A; Retkute R
    Epidemics; 2019 Dec; 29():100368. PubMed ID: 31563466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range.
    Wan X; Wang W; Liu J; Tong T
    BMC Med Res Methodol; 2014 Dec; 14():135. PubMed ID: 25524443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selecting summary statistics in approximate Bayesian computation for calibrating stochastic models.
    Burr T; Skurikhin A
    Biomed Res Int; 2013; 2013():210646. PubMed ID: 24288668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standard error estimation in meta-analysis of studies reporting medians.
    McGrath S; Katzenschlager S; Zimmer AJ; Seitel A; Steele R; Benedetti A
    Stat Methods Med Res; 2023 Feb; 32(2):373-388. PubMed ID: 36412105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MSE FINDR: A Shiny R Application to Estimate Mean Square Error Using Treatment Means and Post Hoc Test Results.
    Garnica VC; Shah DA; Esker PD; Ojiambo PS
    Plant Dis; 2024 Jul; 108(7):1937-1945. PubMed ID: 38319624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RIMeta: An R shiny tool for estimating the reference interval from a meta-analysis.
    Jiang Z; Cao W; Chu H; Bazerbachi F; Siegel L
    Res Synth Methods; 2023 May; 14(3):468-478. PubMed ID: 36725922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Importance of Prior Sensitivity Analysis in Bayesian Statistics: Demonstrations Using an Interactive Shiny App.
    Depaoli S; Winter SD; Visser M
    Front Psychol; 2020; 11():608045. PubMed ID: 33324306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis.
    McGrath S; Zhao X; Steele R; Thombs BD; Benedetti A;
    Stat Methods Med Res; 2020 Sep; 29(9):2520-2537. PubMed ID: 32292115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate Bayesian computation for spatial SEIR(S) epidemic models.
    Brown GD; Porter AT; Oleson JJ; Hinman JA
    Spat Spatiotemporal Epidemiol; 2018 Feb; 24():27-37. PubMed ID: 29413712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for choosing summary statistics in approximate Bayesian computation.
    Aeschbacher S; Beaumont MA; Futschik A
    Genetics; 2012 Nov; 192(3):1027-47. PubMed ID: 22960215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kernel-density estimation and approximate Bayesian computation for flexible epidemiological model fitting in Python.
    Irvine MA; Hollingsworth TD
    Epidemics; 2018 Dec; 25():80-88. PubMed ID: 29884470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating species trees using approximate Bayesian computation.
    Fan HH; Kubatko LS
    Mol Phylogenet Evol; 2011 May; 59(2):354-63. PubMed ID: 21397706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximate Bayesian computation with functional statistics.
    Soubeyrand S; Carpentier F; Guiton F; Klein EK
    Stat Appl Genet Mol Biol; 2013 Mar; 12(1):17-37. PubMed ID: 23446870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending approximate Bayesian computation with supervised machine learning to infer demographic history from genetic polymorphisms using DIYABC Random Forest.
    Collin FD; Durif G; Raynal L; Lombaert E; Gautier M; Vitalis R; Marin JM; Estoup A
    Mol Ecol Resour; 2021 Nov; 21(8):2598-2613. PubMed ID: 33950563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automating approximate Bayesian computation by local linear regression.
    Thornton KR
    BMC Genet; 2009 Jul; 10():35. PubMed ID: 19583871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian parameter inference and model selection by population annealing in systems biology.
    Murakami Y
    PLoS One; 2014; 9(8):e104057. PubMed ID: 25089832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.