BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 34148342)

  • 21. Rapid preparation of surface-enhanced Raman substrate in microfluidic channel for trace detection of amoxicillin.
    Wang L; Zhou G; Guan XL; Zhao L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jul; 235():118262. PubMed ID: 32251895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine.
    Jiang Z; Gao P; Yang L; Huang C; Li Y
    Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes.
    Krafft B; Panneerselvam R; Geissler D; Belder D
    Anal Bioanal Chem; 2020 Jan; 412(2):267-277. PubMed ID: 31797018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel molecularly imprinted nanogel modified microfluidic paper-based SERS substrate for simultaneous detection of bisphenol A and bisphenol S traces in plastics.
    Sharipov M; Ju TJ; Azizov S; Turaev A; Lee YI
    J Hazard Mater; 2024 Jan; 461():132561. PubMed ID: 37729714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering.
    Hassoun M; Rüger J; Kirchberger-Tolstik T; Schie IW; Henkel T; Weber K; Cialla-May D; Krafft C; Popp J
    Anal Bioanal Chem; 2018 Jan; 410(3):999-1006. PubMed ID: 28905087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection.
    Wang S; Liu C; Wang H; Chen G; Cong M; Song W; Jia Q; Xu S; Xu W
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11706-13. PubMed ID: 24978908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis.
    Niculescu AG; Mihaiescu DE; Grumezescu AM
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lab-on-Chip, Surface-Enhanced Raman Analysis by Aerosol Jet Printing and Roll-to-Roll Hot Embossing.
    Habermehl A; Strobel N; Eckstein R; Bolse N; Mertens A; Hernandez-Sosa G; Eschenbaum C; Lemmer U
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29053610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Template-Confined Site-Specific Electrodeposition of Nanoparticle Cluster-in-Bowl Arrays as Surface Enhanced Raman Spectroscopy Substrates.
    Wang Y; Yu Y; Liu Y; Yang S
    ACS Sens; 2018 Nov; 3(11):2343-2350. PubMed ID: 30350595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip.
    Zheng Z; Wu L; Li L; Zong S; Wang Z; Cui Y
    Talanta; 2018 Oct; 188():507-515. PubMed ID: 30029406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasensitive and Simultaneous Detection of Two Cytokines Secreted by Single Cell in Microfluidic Droplets via Magnetic-Field Amplified SERS.
    Sun D; Cao F; Xu W; Chen Q; Shi W; Xu S
    Anal Chem; 2019 Feb; 91(3):2551-2558. PubMed ID: 30624061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Injection-Molded Microfluidic Device for SERS Sensing Using Embedded Au-Capped Polymer Nanocones.
    Viehrig M; Thilsted AH; Matteucci M; Wu K; Catak D; Schmidt MS; Zór K; Boisen A
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37417-37425. PubMed ID: 30277378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustofluidics-Assisted Engineering of Multifunctional Three-Dimensional Zinc Oxide Nanoarrays.
    Hao N; Liu P; Bachman H; Pei Z; Zhang P; Rufo J; Wang Z; Zhao S; Huang TJ
    ACS Nano; 2020 May; 14(5):6150-6163. PubMed ID: 32352741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dielectrophoretic Nanoparticle Aggregation for On-Demand Surface Enhanced Raman Spectroscopy Analysis.
    Salemmilani R; Piorek BD; Mirsafavi RY; Fountain AW; Moskovits M; Meinhart CD
    Anal Chem; 2018 Jul; 90(13):7930-7936. PubMed ID: 29863841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels.
    Xu BB; Ma ZC; Wang L; Zhang R; Niu LG; Yang Z; Zhang YL; Zheng WH; Zhao B; Xu Y; Chen QD; Xia H; Sun HB
    Lab Chip; 2011 Oct; 11(19):3347-51. PubMed ID: 21863148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated EC-SERS Chip with Uniform Nanostructured EC-SERS Active Working Electrode for Rapid Detection of Uric Acid.
    Huang CY; Hsiao HC
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing.
    Kant K; Abalde-Cela S
    Biosensors (Basel); 2018 Jun; 8(3):. PubMed ID: 29966248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis.
    Quang LX; Lim C; Seong GH; Choo J; Do KJ; Yoo SK
    Lab Chip; 2008 Dec; 8(12):2214-9. PubMed ID: 19023489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Two-Step Photoreduced SERS Materials for On-Chip Single-Molecule Spectroscopy with High Reproducibility.
    Yan W; Yang L; Chen J; Wu Y; Wang P; Li Z
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28718979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.