These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34148448)

  • 1. A rapid benchtop method to assess biofilm on marine fouling control coatings.
    Dennington SPJ; Jackson A; Finnie AA; Wharton JA; Longyear JE; Stoodley P
    Biofouling; 2021 Apr; 37(4):452-464. PubMed ID: 34148448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 'in-service' conditions - mimicked hull roughness ranges and biofilms - on the surface and the hydrodynamic characteristics of foul-release type coatings.
    Yeginbayeva IA; Atlar M; Turkmen S; Chen H
    Biofouling; 2020 Oct; 36(9):1074-1089. PubMed ID: 33291985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drag-reducing riblets with fouling-release properties: development and testing.
    Benschop HOG; Guerin AJ; Brinkmann A; Dale ML; Finnie AA; Breugem WP; Clare AS; Stübing D; Price C; Reynolds KJ
    Biofouling; 2018 May; 34(5):532-544. PubMed ID: 29806493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings.
    Schultz MP; Walker JM; Steppe CN; Flack KA
    Biofouling; 2015; 31(9-10):759-73. PubMed ID: 26652667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of hydrodynamic drag on experimental fouling-release surfaces, using rotating disks.
    Holm ER; Schultz MP; Haslbeck EG; Talbott WJ; Field AJ
    Biofouling; 2004; 20(4-5):219-26. PubMed ID: 15621643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental investigation into the surface and hydrodynamic characteristics of marine coatings with mimicked hull roughness ranges.
    Yeginbayeva IA; Atlar M
    Biofouling; 2018 Oct; 34(9):1001-1019. PubMed ID: 30537869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoplastic, rubber-like marine antifouling coatings with micro-structures
    Bus T; Dale ML; Reynolds KJ; Bastiaansen CWM
    Biofouling; 2020 Feb; 36(2):138-145. PubMed ID: 32223324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hydrodynamic stress on the frictional drag of biofouling communities.
    Hunsucker JT; Hunsucker KZ; Gardner H; Swain G
    Biofouling; 2016 Nov; 32(10):1209-1221. PubMed ID: 27744722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roughness effects of diatomaceous slime fouling on turbulent boundary layer hydrodynamics.
    Murphy EAK; Barros JM; Schultz MP; Flack KA; Steppe CN; Reidenbach MA
    Biofouling; 2018 Oct; 34(9):976-988. PubMed ID: 30602310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings.
    Zhou Z; Calabrese DR; Taylor W; Finlay JA; Callow ME; Callow JA; Fischer D; Kramer EJ; Ober CK
    Biofouling; 2014; 30(5):589-604. PubMed ID: 24730510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ship hull in-water cleaning and its effects on fouling-control coatings.
    Oliveira DR; Granhag L
    Biofouling; 2020 Mar; 36(3):332-350. PubMed ID: 32401553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine biofilms on different fouling control coating types reveal differences in microbial community composition and abundance.
    Papadatou M; Robson SC; Dobretsov S; Watts JEM; Longyear J; Salta M
    Microbiologyopen; 2021 Aug; 10(4):e1231. PubMed ID: 34459542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of proactive in-water grooming to improve the performance of ship hull antifouling coatings.
    Tribou M; Swain G
    Biofouling; 2010 Jan; 26(1):47-56. PubMed ID: 20390556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental investigation of the frictional drag characteristics of nanostructured and fluorinated fouling-release coatings using an axisymmetric body.
    Atlar M; Unal B; Unal UO; Politis G; Martinelli E; Galli G; Davies C; Williams D
    Biofouling; 2013; 29(1):39-52. PubMed ID: 23194395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation into the effects of marine biofilm on the roughness and drag characteristics of surfaces coated with different sized cuprous oxide (Cu
    Li C; Atlar M; Haroutunian M; Norman R; Anderson C
    Biofouling; 2019 Jan; 35(1):15-33. PubMed ID: 30712376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating.
    Hunsucker KZ; Vora GJ; Hunsucker JT; Gardner H; Leary DH; Kim S; Lin B; Swain G
    Biofouling; 2018 Feb; 34(2):162-172. PubMed ID: 29347829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface properties influence marine biofilm rheology, with implications for ship drag.
    Snowdon AA; Dennington SP; Longyear JE; Wharton JA; Stoodley P
    Soft Matter; 2023 May; 19(20):3675-3687. PubMed ID: 37170818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grooming of fouling-release coatings to control marine fouling and determining how grooming affects the surface.
    Dahlgren J; Foy L; Hunsucker K; Gardner H; Swain G; Stafslien SJ; Vanderwal L; Bahr J; Webster DC
    Biofouling; 2022 Apr; 38(4):384-400. PubMed ID: 35655420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of environmentally safe antifouling coatings using nano-MnO
    Moawad MN; El-Damhogy KA; Ghobashy MM; Radwan IM; Alabssawy AN
    Sci Rep; 2023 Nov; 13(1):19289. PubMed ID: 37935757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of biological development effects on drag forces of ceramic hull coating using Reynolds-averaged Navier-Stokes-based solver.
    Sanz DS; García S; Trueba A; Islam H; Soares CG
    Biofouling; 2023 Mar; 39(3):289-302. PubMed ID: 37154076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.