These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34148451)

  • 21. Quantitative structure-imprinting factor relationship of molecularly imprinted polymers.
    Nantasenamat C; Isarankura-Na-Ayudhya C; Naenna T; Prachayasittikul V
    Biosens Bioelectron; 2007 Jun; 22(12):3309-17. PubMed ID: 17317143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Partial least square and hierarchical clustering in ADMET modeling: prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands.
    Nikolic K; Filipic S; Smoliński A; Kaliszan R; Agbaba D
    J Pharm Pharm Sci; 2013; 16(4):622-47. PubMed ID: 24210068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combination of genetic algorithm and partial least squares for cloud point prediction of nonionic surfactants from molecular structures.
    Ghasemi J; Ahmadi S
    Ann Chim; 2007; 97(1-2):69-83. PubMed ID: 17822265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular modeling of polymers 16. Gaseous diffusion in polymers: a quantitative structure-property relationship (QSPR) analysis.
    Patel HC; Tokarski JS; Hopfinger AJ
    Pharm Res; 1997 Oct; 14(10):1349-54. PubMed ID: 9358546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A quantitative structure-property relationship study for refractive indices of conjugated polymers.
    Gao J; Xu J; Chen B; Zhang Q
    J Mol Model; 2007 May; 13(5):573-8. PubMed ID: 17340114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel QSPR model for predicting θ (lower critical solution temperature) in polymer solutions using molecular descriptors.
    Melagraki G; Afantitis A; Sarimveis H; Koutentis PA; Markopoulos J; Igglessi-Markopoulou O
    J Mol Model; 2007; 13(1):55-64. PubMed ID: 16738871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First report on chemometric modeling of hydrolysis half-lives of organic chemicals.
    Khan PM; Lombardo A; Benfenati E; Roy K
    Environ Sci Pollut Res Int; 2021 Jan; 28(2):1627-1642. PubMed ID: 32844343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative structure/property relationship analysis of Caco-2 permeability using a genetic algorithm-based partial least squares method.
    Yamashita F; Wanchana S; Hashida M
    J Pharm Sci; 2002 Oct; 91(10):2230-9. PubMed ID: 12226850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemometric modeling to predict air half-life of persistent organic pollutants (POPs).
    Khan PM; Baderna D; Lombardo A; Roy K; Benfenati E
    J Hazard Mater; 2020 Jan; 382():121035. PubMed ID: 31450211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of QSPR Modeling to Characterize In Vitro Binding of Drugs to a Gut-Restricted Polymer.
    Brew CT; Blake JF; Mistry A; Liu F; Carreno D; Madsen D; Mu Y; Mayo M; Stahl W; Matthews D; Maclean D; Harrison S
    Pharm Res; 2018 Mar; 35(4):89. PubMed ID: 29520505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel workflow for the inverse QSPR problem using multiobjective optimization.
    Brown N; McKay B; Gasteiger J
    J Comput Aided Mol Des; 2006 May; 20(5):333-41. PubMed ID: 17031542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ring Repeating Unit: An Upgraded Structure Representation of Linear Condensation Polymers for Property Prediction.
    Yu M; Shi Y; Jia Q; Wang Q; Luo ZH; Yan F; Zhou YN
    J Chem Inf Model; 2023 Feb; 63(4):1177-1187. PubMed ID: 36651860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative studies on some metrics for external validation of QSPR models.
    Roy K; Mitra I; Kar S; Ojha PK; Das RN; Kabir H
    J Chem Inf Model; 2012 Feb; 52(2):396-408. PubMed ID: 22201416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring 3D-QSPR models of human skin permeability for a diverse dataset of chemical compounds.
    Rezaei S; Behnejad H; Shiri F; Ghasemi JB
    J Recept Signal Transduct Res; 2019; 39(5-6):442-450. PubMed ID: 31766932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative structure-property relationship (QSPR) models for predicting the physicochemical properties of polychlorinated biphenyls (PCBs) using deep belief network.
    Safder U; Nam K; Kim D; Shahlaei M; Yoo C
    Ecotoxicol Environ Saf; 2018 Oct; 162():17-28. PubMed ID: 29957404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring QSPR modeling for adsorption of hazardous synthetic organic chemicals (SOCs) by SWCNTs.
    Ghosh S; Ojha PK; Roy K
    Chemosphere; 2019 Aug; 228():545-555. PubMed ID: 31051358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of quantitative structure property relationships for poly(arylene ether)s.
    Hamerton I; Howlin BJ; Larwood V
    J Mol Graph; 1995 Feb; 13(1):14-7, 51. PubMed ID: 7794828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of 13C chemical shifts in methoxyflavonol derivatives using MIA-QSPR.
    Goodarzi M; Freitas MP; Ramalho TC
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(2):563-8. PubMed ID: 19648055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSPR modelling of dielectric constants of π-conjugated organic compounds by means of the CORAL software.
    Achary PG
    SAR QSAR Environ Res; 2014; 25(6):507-26. PubMed ID: 24716837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of human blood: air partition coefficient: a comparison of structure-based and property-based methods.
    Basak SC; Mills D; Hawkins DM; El-Masri HA
    Risk Anal; 2003 Dec; 23(6):1173-84. PubMed ID: 14641892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.