These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method. Lee JH; Griffith BE J Comput Phys; 2022 May; 457():. PubMed ID: 35300097 [TBL] [Abstract][Full Text] [Related]
4. An Immersed Interface Method for Discrete Surfaces. Kolahdouz EM; Bhalla APS; Craven BA; Griffith BE J Comput Phys; 2020 Jan; 400():. PubMed ID: 31802781 [TBL] [Abstract][Full Text] [Related]
5. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies. Borazjani I; Ge L; Sotiropoulos F J Comput Phys; 2008 Aug; 227(16):7587-7620. PubMed ID: 20981246 [TBL] [Abstract][Full Text] [Related]
6. Hybrid finite difference/finite element immersed boundary method. Griffith BE; Luo X Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587 [TBL] [Abstract][Full Text] [Related]
8. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation. Bavo AM; Rocatello G; Iannaccone F; Degroote J; Vierendeels J; Segers P PLoS One; 2016; 11(4):e0154517. PubMed ID: 27128798 [TBL] [Abstract][Full Text] [Related]
9. Immersed Methods for Fluid-Structure Interaction. Griffith BE; Patankar NA Annu Rev Fluid Mech; 2020; 52():421-448. PubMed ID: 33012877 [TBL] [Abstract][Full Text] [Related]
10. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity. Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394 [TBL] [Abstract][Full Text] [Related]
11. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries. Ge L; Sotiropoulos F J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533 [TBL] [Abstract][Full Text] [Related]
12. A novel mono-physics particle-based approach for the simulation of cardiovascular fluid-structure interaction problems. Monteleone A; Di Leonardo S; Napoli E; Burriesci G Comput Methods Programs Biomed; 2024 Mar; 245():108034. PubMed ID: 38244340 [TBL] [Abstract][Full Text] [Related]
13. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Griffith BE Int J Numer Method Biomed Eng; 2012 Mar; 28(3):317-45. PubMed ID: 25830200 [TBL] [Abstract][Full Text] [Related]
14. Variational coupling of non-matching discretizations across finitely deforming fluid-structure interfaces. Kang S; Kwack J; Masud A Int J Numer Methods Fluids; 2022 Jun; 94(6):678-718. PubMed ID: 37736534 [TBL] [Abstract][Full Text] [Related]
15. Comparison of a fixed-grid and arbitrary Lagrangian-Eulerian methods on modelling fluid-structure interaction of the aortic valve. Joda A; Jin Z; Summers J; Korossis S Proc Inst Mech Eng H; 2019 May; 233(5):544-553. PubMed ID: 30922162 [TBL] [Abstract][Full Text] [Related]
16. Modelling and Simulation Strategies for Fluid-Structure-Interactions of Highly Viscous Thermoplastic Melt and Single Fibres-A Numerical Study. Gröger B; Wang J; Bätzel T; Hornig A; Gude M Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295308 [TBL] [Abstract][Full Text] [Related]
17. A Nodal Immersed Finite Element-Finite Difference Method. Wells D; Vadala-Roth B; Lee JH; Griffith BE J Comput Phys; 2023 Mar; 477():. PubMed ID: 37007629 [TBL] [Abstract][Full Text] [Related]
18. An Immersed Boundary method with divergence-free velocity interpolation and force spreading. Bao Y; Donev A; Griffith BE; McQueen DM; Peskin CS J Comput Phys; 2017 Oct; 347():183-206. PubMed ID: 31595090 [TBL] [Abstract][Full Text] [Related]