These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34149063)

  • 21. Fluid-structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation.
    Hsu MC; Kamensky D; Bazilevs Y; Sacks MS; Hughes TJ
    Comput Mech; 2014 Oct; 54(4):1055-1071. PubMed ID: 25580046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems.
    Tian FB; Dai H; Luo H; Doyle JF; Rousseau B
    J Comput Phys; 2014 Feb; 258():. PubMed ID: 24415796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Vitro Clot Trapping Efficiency of the FDA Generic Inferior Vena Cava Filter in an Anatomical Model: An Experimental Fluid-Structure Interaction Benchmark.
    Riley JM; Price NS; Saaid HM; Good BC; Aycock KI; Craven BA; Manning KB
    Cardiovasc Eng Technol; 2021 Jun; 12(3):339-352. PubMed ID: 33683671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eulerian simulation of complex suspensions and biolocomotion in three dimensions.
    Lin YL; Derr NJ; Rycroft CH
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces.
    Deng S
    Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
    Krittian S; Janoske U; Oertel H; Böhlke T
    Ann Biomed Eng; 2010 Apr; 38(4):1426-41. PubMed ID: 20058187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Peak Wall Stress in an Ascending Thoracic Aortic Aneurysm Using FSI Simulations: Effects of Aortic Stiffness and Peripheral Resistance.
    Campobasso R; Condemi F; Viallon M; Croisille P; Campisi S; Avril S
    Cardiovasc Eng Technol; 2018 Dec; 9(4):707-722. PubMed ID: 30341731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid structure computational model of simulating mitral valve motion in a contracting left ventricle.
    Alharbi Y; Al Abed A; Bakir AA; Lovell NH; Muller DWM; Otton J; Dokos S
    Comput Biol Med; 2022 Sep; 148():105834. PubMed ID: 35816854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissipative Coupling of Fluid and Immersed Objects for Modelling of Cells in Flow.
    Bušík M; Slavík M; Cimrák I
    Comput Math Methods Med; 2018; 2018():7842857. PubMed ID: 30363716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An immersed boundary computational model for acoustic scattering problems with complex geometries.
    Sun X; Jiang Y; Liang A; Jing X
    J Acoust Soc Am; 2012 Nov; 132(5):3190-9. PubMed ID: 23145603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluid-structure interaction simulations of venous valves: A monolithic ALE method for large structural displacements.
    Calandrini S; Aulisa E
    Int J Numer Method Biomed Eng; 2019 Feb; 35(2):e3156. PubMed ID: 30226292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immersed finite element method and its applications to biological systems.
    Liu WK; Liu Y; Farrell D; Zhang L; Wang XS; Fukui Y; Patankar N; Zhang Y; Bajaj C; Lee J; Hong J; Chen X; Hsu H
    Comput Methods Appl Mech Eng; 2006 Feb; 195(13-16):1722-1749. PubMed ID: 20200602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An immersed-shell method for modelling fluid-structure interactions.
    Viré A; Xiang J; Pain CC
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation the effect of geometry and position of polymeric heart valves on hemodynamic with fluid-structure interaction numerical method.
    Farokhi EA; Niroomand-Oscuii H; Yazdanpanah K
    Med Eng Phys; 2021 Nov; 97():10-17. PubMed ID: 34756333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluid-structure interaction simulation of the brain-skull interface for acute subdural haematoma prediction.
    Zhou Z; Li X; Kleiven S
    Biomech Model Mechanobiol; 2019 Feb; 18(1):155-173. PubMed ID: 30151812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Capturing functional relations in fluid-structure interaction via machine learning.
    Soni T; Sharma A; Dutta R; Dutta A; Jayavelu S; Sarkar S
    R Soc Open Sci; 2022 Apr; 9(4):220097. PubMed ID: 35401993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mathematical and Numerical Modeling of Turbulent Flows.
    Vedovoto JM; Serfaty R; Da Silveira Neto A
    An Acad Bras Cienc; 2015; 87(2):1195-232. PubMed ID: 26131642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.
    Guivier-Curien C; Deplano V; Bertrand E
    Med Eng Phys; 2009 Oct; 31(8):986-93. PubMed ID: 19577504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.