These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34149110)

  • 1. Comprehensive Insights Into O
    Zhu S; Poetzscher J; Shen J; Wang S; Wang P; Zhang H
    Geophys Res Lett; 2021 May; 48(10):e2021GL093668. PubMed ID: 34149110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta.
    Wang Y; Zhu S; Ma J; Shen J; Wang P; Wang P; Zhang H
    Sci Total Environ; 2021 May; 768():144796. PubMed ID: 33429116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface ozone changes during the COVID-19 outbreak in China: An insight into the pollution characteristics and formation regimes of ozone in the cold season.
    Tong L; Liu Y; Meng Y; Dai X; Huang L; Luo W; Yang M; Pan Y; Zheng J; Xiao H
    J Atmos Chem; 2023; 80(1):103-120. PubMed ID: 36248311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of close relationship between atmospheric oxidation and ozone formation regimes in a photochemically active region.
    Zhao K; Luo H; Yuan Z; Xu D; Du Y; Zhang S; Hao Y; Wu Y; Huang J; Wang Y; Jiang R
    J Environ Sci (China); 2021 Apr; 102():373-383. PubMed ID: 33637263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overview on the spatial-temporal characteristics of the ozone formation regime in China.
    Lu H; Lyu X; Cheng H; Ling Z; Guo H
    Environ Sci Process Impacts; 2019 Jun; 21(6):916-929. PubMed ID: 31089656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertical Evolution of Ozone Formation Sensitivity Based on Synchronous Vertical Observations of Ozone and Proxies for Its Precursors: Implications for Ozone Pollution Prevention Strategies.
    Hu Q; Ji X; Hong Q; Li J; Li Q; Ou J; Liu H; Xing C; Tan W; Chen J; Chang B; Liu C
    Environ Sci Technol; 2024 Mar; 58(9):4291-4301. PubMed ID: 38385161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the underlying mechanisms governing the linkage between atmospheric oxidative capacity and ozone precursor sensitivity in the Yangtze River Delta, China: A multi-tool ensemble analysis.
    Zhao K; Wu Y; Yuan Z; Huang J; Liu X; Ma W; Xu D; Jiang R; Duan Y; Fu Q; Xu W
    Environ Int; 2022 Feb; 160():107060. PubMed ID: 34952358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attribution of Tropospheric Ozone to NO
    Wang P; Chen Y; Hu J; Zhang H; Ying Q
    Environ Sci Technol; 2019 Feb; 53(3):1404-1412. PubMed ID: 30582806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of VOC emissions from chemical industrial parks on regional O
    He L; Duan Y; Zhang Y; Yu Q; Huo J; Chen J; Cui H; Li Y; Ma W
    Sci Total Environ; 2024 Jan; 906():167503. PubMed ID: 37788769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ozone control strategies for local formation- and regional transport-dominant scenarios in a manufacturing city in southern China.
    Mao J; Yan F; Zheng L; You Y; Wang W; Jia S; Liao W; Wang X; Chen W
    Sci Total Environ; 2022 Mar; 813():151883. PubMed ID: 34826481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China.
    Wang R; Wang L; Sun J; Zhang L; Li Y; Li K; Liu B; Zhang J; Wang Y
    Sci Total Environ; 2023 Dec; 905():166987. PubMed ID: 37717781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the mechanisms of rapid O
    Li R; Gao Y; Han Y; Zhang Y; Zhang B; Fu H; Wang G
    Sci Total Environ; 2024 Jan; 906():167622. PubMed ID: 37806584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identify the key emission sources for mitigating ozone pollution: A case study of urban area in the Yangtze River Delta region, China.
    Zhang X; Ma Q; Chu W; Ning M; Liu X; Xiao F; Cai N; Wu Z; Yan G
    Sci Total Environ; 2023 Sep; 892():164703. PubMed ID: 37290640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggravating O
    Wang N; Lyu X; Deng X; Huang X; Jiang F; Ding A
    Sci Total Environ; 2019 Aug; 677():732-744. PubMed ID: 31075619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ozone pollution mitigation in guangxi (south China) driven by meteorology and anthropogenic emissions during the COVID-19 lockdown.
    Fu S; Guo M; Fan L; Deng Q; Han D; Wei Y; Luo J; Qin G; Cheng J
    Environ Pollut; 2021 Mar; 272():115927. PubMed ID: 33143981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China.
    You Z; Zhu Y; Jang C; Wang S; Gao J; Lin CJ; Li M; Zhu Z; Wei H; Yang W
    J Environ Sci (China); 2017 Jan; 51():294-304. PubMed ID: 28115141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source contributions of surface ozone in China using an adjoint sensitivity analysis.
    Wang MY; Yim SHL; Wong DC; Ho KF
    Sci Total Environ; 2019 Apr; 662():385-392. PubMed ID: 30690372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased ozone pollution alongside reduced nitrogen dioxide concentrations during Vienna's first COVID-19 lockdown: Significance for air quality management.
    Brancher M
    Environ Pollut; 2021 Sep; 284():117153. PubMed ID: 33940341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions.
    Sokhi RS; Singh V; Querol X; Finardi S; Targino AC; Andrade MF; Pavlovic R; Garland RM; Massagué J; Kong S; Baklanov A; Ren L; Tarasova O; Carmichael G; Peuch VH; Anand V; Arbilla G; Badali K; Beig G; Belalcazar LC; Bolignano A; Brimblecombe P; Camacho P; Casallas A; Charland JP; Choi J; Chourdakis E; Coll I; Collins M; Cyrys J; da Silva CM; Di Giosa AD; Di Leo A; Ferro C; Gavidia-Calderon M; Gayen A; Ginzburg A; Godefroy F; Gonzalez YA; Guevara-Luna M; Haque SM; Havenga H; Herod D; Hõrrak U; Hussein T; Ibarra S; Jaimes M; Kaasik M; Khaiwal R; Kim J; Kousa A; Kukkonen J; Kulmala M; Kuula J; La Violette N; Lanzani G; Liu X; MacDougall S; Manseau PM; Marchegiani G; McDonald B; Mishra SV; Molina LT; Mooibroek D; Mor S; Moussiopoulos N; Murena F; Niemi JV; Noe S; Nogueira T; Norman M; Pérez-Camaño JL; Petäjä T; Piketh S; Rathod A; Reid K; Retama A; Rivera O; Rojas NY; Rojas-Quincho JP; San José R; Sánchez O; Seguel RJ; Sillanpää S; Su Y; Tapper N; Terrazas A; Timonen H; Toscano D; Tsegas G; Velders GJM; Vlachokostas C; von Schneidemesser E; Vpm R; Yadav R; Zalakeviciute R; Zavala M
    Environ Int; 2021 Dec; 157():106818. PubMed ID: 34425482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of local emissions and regional background to summertime ozone in central China.
    Su F; Xu Q; Yin S; Wang K; Liu G; Wang P; Kang M; Zhang R; Ying Q
    J Environ Manage; 2023 Jul; 338():117778. PubMed ID: 37019021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.