These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 34149110)
41. Atmospheric oxidizing capacity in autumn Beijing: Analysis of the O Jia C; Tong S; Zhang X; Li F; Zhang W; Li W; Wang Z; Zhang G; Tang G; Liu Z; Ge M J Environ Sci (China); 2023 Feb; 124():557-569. PubMed ID: 36182163 [TBL] [Abstract][Full Text] [Related]
42. Nonlinear response of nitrate to NO Ren C; Huang X; Wang Z; Sun P; Chi X; Ma Y; Zhou D; Huang J; Xie Y; Gao J; Ding A Atmos Environ (1994); 2021 Nov; 264():118715. PubMed ID: 34539213 [TBL] [Abstract][Full Text] [Related]
43. Impacts of haze and nitrogen oxide alleviation on summertime ozone formation: A modeling study over the Yangtze River Delta, China. Feng T; Liu L; Zhao S Environ Pollut; 2023 Oct; 335():122347. PubMed ID: 37562528 [TBL] [Abstract][Full Text] [Related]
44. Atmospheric oxidation capacity and O Chen G; Liu T; Chen J; Xu L; Hu B; Yang C; Fan X; Li M; Hong Y; Ji X; Chen J; Zhang F J Environ Sci (China); 2024 Feb; 136():68-80. PubMed ID: 37923476 [TBL] [Abstract][Full Text] [Related]
45. Quantifying the impacts of inter-city transport on air quality in the Yangtze River Delta urban agglomeration, China: Implications for regional cooperative controls of PM Gong K; Li L; Li J; Qin M; Wang X; Ying Q; Liao H; Guo S; Hu M; Zhang Y; Hu J Sci Total Environ; 2021 Jul; 779():146619. PubMed ID: 34030281 [TBL] [Abstract][Full Text] [Related]
46. PM Tao C; Zhang Q; Huo S; Ren Y; Han S; Wang Q; Wang W Sci Total Environ; 2024 Mar; 916():170009. PubMed ID: 38220017 [TBL] [Abstract][Full Text] [Related]
47. Ozone pollution characteristics and sensitivity analysis using an observation-based model in Nanjing, Yangtze River Delta Region of China. Wang M; Chen W; Zhang L; Qin W; Zhang Y; Zhang X; Xie X J Environ Sci (China); 2020 Jul; 93():13-22. PubMed ID: 32446449 [TBL] [Abstract][Full Text] [Related]
48. Co-occurrence of ozone and PM Dai H; Liao H; Wang Y; Qian J Sci Total Environ; 2024 May; 924():171687. PubMed ID: 38485008 [TBL] [Abstract][Full Text] [Related]
49. Ozone responses to reduced precursor emissions: A modeling analysis on how attainable goals can improve air quality in the Mexico City Metropolitan Area. Vazquez Santiago J; Jaimes Palomera M; Resendiz Martinez C; Hernandez Matamoros A; Hata H; Inoue K; Tonokura K Sci Total Environ; 2024 Feb; 912():169180. PubMed ID: 38072281 [TBL] [Abstract][Full Text] [Related]
50. Sensitivity and linearity analysis of ozone in East Asia: the effects of domestic emission and intercontinental transport. Fu JS; Dong X; Gao Y; Wong DC; Lam YF J Air Waste Manag Assoc; 2012 Sep; 62(9):1102-14. PubMed ID: 23019824 [TBL] [Abstract][Full Text] [Related]
51. Ozone response modeling to NOx and VOC emissions: Examining machine learning models. Kuo CP; Fu JS Environ Int; 2023 Jun; 176():107969. PubMed ID: 37201398 [TBL] [Abstract][Full Text] [Related]
52. Air quality and synergistic health effects of ozone and nitrogen oxides in response to China's integrated air quality control policies during 2015-2019. Zhang X; Fung JCH; Lau AKH; Hossain MS; Louie PKK; Huang W Chemosphere; 2021 Apr; 268():129385. PubMed ID: 33383278 [TBL] [Abstract][Full Text] [Related]
53. Responses of surface O He Z; Liu P; Zhao X; He X; Liu J; Mu Y Sci Total Environ; 2022 Feb; 807(Pt 2):150792. PubMed ID: 34619192 [TBL] [Abstract][Full Text] [Related]
54. Decrease in ambient volatile organic compounds during the COVID-19 lockdown period in the Pearl River Delta region, south China. Pei C; Yang W; Zhang Y; Song W; Xiao S; Wang J; Zhang J; Zhang T; Chen D; Wang Y; Chen Y; Wang X Sci Total Environ; 2022 Jun; 823():153720. PubMed ID: 35149077 [TBL] [Abstract][Full Text] [Related]
55. Changes in Ozone Chemical Sensitivity in the United States from 2007 to 2016. Koplitz S; Simon H; Henderson B; Liljegren J; Tonnesen G; Whitehill A; Wells B ACS Environ Au; 2022 May; 2(3):206-222. PubMed ID: 35967933 [TBL] [Abstract][Full Text] [Related]
56. Research on ozone formation sensitivity based on observational methods: Development history, methodology, and application and prospects in China. Chu W; Li H; Ji Y; Zhang X; Xue L; Gao J; An C J Environ Sci (China); 2024 Apr; 138():543-560. PubMed ID: 38135419 [TBL] [Abstract][Full Text] [Related]
57. Contrasting effects of clean air actions on surface ozone concentrations in different regions over Beijing from May to September 2013-2020. Zhang L; Wang L; Liu B; Tang G; Liu B; Li X; Sun Y; Li M; Chen X; Wang Y; Hu B Sci Total Environ; 2023 Dec; 903():166182. PubMed ID: 37562614 [TBL] [Abstract][Full Text] [Related]
58. Predicting ozone formation in petrochemical industrialized Lanzhou city by interpretable ensemble machine learning. Wang L; Zhao Y; Shi J; Ma J; Liu X; Han D; Gao H; Huang T Environ Pollut; 2023 Feb; 318():120798. PubMed ID: 36464118 [TBL] [Abstract][Full Text] [Related]
59. Parameterized atmospheric oxidation capacity and speciated OH reactivity over a suburban site in the North China Plain: A comparative study between summer and winter. Yang Y; Wang Y; Huang W; Yao D; Zhao S; Wang Y; Ji D; Zhang R; Wang Y Sci Total Environ; 2021 Jun; 773():145264. PubMed ID: 33940722 [TBL] [Abstract][Full Text] [Related]
60. Is atmospheric oxidation capacity better in indicating tropospheric O Wang P; Zhu S; Vrekoussis M; Brasseur GP; Wang S; Zhang H Front Environ Sci Eng; 2022; 16(5):65. PubMed ID: 35693985 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]