These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 34149620)

  • 1. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers.
    George MN; Leavens KF; Gadue P
    Front Endocrinol (Lausanne); 2021; 12():682625. PubMed ID: 34149620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction.
    Bartolomé A
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances and potential applications of human pluripotent stem cell-derived pancreatic β cells.
    Zhou Z; Ma X; Zhu S
    Acta Biochim Biophys Sin (Shanghai); 2020 Jul; 52(7):708-715. PubMed ID: 32445468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing of human pancreatic beta cell models: problems, possibilities and outlook.
    Balboa D; Prasad RB; Groop L; Otonkoski T
    Diabetologia; 2019 Aug; 62(8):1329-1336. PubMed ID: 31161346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling different types of diabetes using human pluripotent stem cells.
    Abdelalim EM
    Cell Mol Life Sci; 2021 Mar; 78(6):2459-2483. PubMed ID: 33242105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human pluripotent stem cell based islet models for diabetes research.
    Balboa D; Otonkoski T
    Best Pract Res Clin Endocrinol Metab; 2015 Dec; 29(6):899-909. PubMed ID: 26696518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development.
    Millette K; Georgia S
    Curr Diab Rep; 2017 Oct; 17(11):116. PubMed ID: 28980194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concise Review: Human Pluripotent Stem Cells for the Modeling of Pancreatic β-Cell Pathology.
    Balboa D; Saarimäki-Vire J; Otonkoski T
    Stem Cells; 2019 Jan; 37(1):33-41. PubMed ID: 30270471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monogenic Diabetes Modeling:
    Burgos JI; Vallier L; Rodríguez-Seguí SA
    Front Endocrinol (Lausanne); 2021; 12():692596. PubMed ID: 34295307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development.
    Shi ZD; Lee K; Yang D; Amin S; Verma N; Li QV; Zhu Z; Soh CL; Kumar R; Evans T; Chen S; Huangfu D
    Cell Stem Cell; 2017 May; 20(5):675-688.e6. PubMed ID: 28196600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem cell-based multi-tissue platforms to model human autoimmune diabetes.
    Leavens KF; Alvarez-Dominguez JR; Vo LT; Russ HA; Parent AV
    Mol Metab; 2022 Dec; 66():101610. PubMed ID: 36209784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Editing and Human Pluripotent Stem Cell Technologies for in vitro Monogenic Diabetes Modeling.
    Dabi YT; Degechisa ST
    Diabetes Metab Syndr Obes; 2022; 15():1785-1797. PubMed ID: 35719247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in the Generation of β-Cells from Induced Pluripotent Stem Cells as a Potential Cure for Diabetes Mellitus.
    Agrawal A; Narayan G; Gogoi R; Thummer RP
    Adv Exp Med Biol; 2021; 1347():1-27. PubMed ID: 34426962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of β Cells from iPSC of a MODY8 Patient with a Novel Mutation in the Carboxyl Ester Lipase (CEL) Gene.
    Pellegrini S; Pipitone GB; Cospito A; Manenti F; Poggi G; Lombardo MT; Nano R; Martino G; Ferrari M; Carrera P; Sordi V; Piemonti L
    J Clin Endocrinol Metab; 2021 Apr; 106(5):e2322-e2333. PubMed ID: 33417713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Pluripotent Stem Cells Go Diabetic: A Glimpse on Monogenic Variants.
    Heller S; Melzer MK; Azoitei N; Julier C; Kleger A
    Front Endocrinol (Lausanne); 2021; 12():648284. PubMed ID: 34079523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β Cell Replacement after Gene Editing of a Neonatal Diabetes-Causing Mutation at the Insulin Locus.
    Ma S; Viola R; Sui L; Cherubini V; Barbetti F; Egli D
    Stem Cell Reports; 2018 Dec; 11(6):1407-1415. PubMed ID: 30503261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.
    Wang X; Sterr M; Burtscher I; Chen S; Hieronimus A; Machicao F; Staiger H; Häring HU; Lederer G; Meitinger T; Cernilogar FM; Schotta G; Irmler M; Beckers J; Hrabě de Angelis M; Ray M; Wright CVE; Bakhti M; Lickert H
    Mol Metab; 2018 Mar; 9():57-68. PubMed ID: 29396371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes.
    Zhu Z; Li QV; Lee K; Rosen BP; González F; Soh CL; Huangfu D
    Cell Stem Cell; 2016 Jun; 18(6):755-768. PubMed ID: 27133796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence of human pluripotent stem cell, organoid, and genome editing technologies.
    Wang L; Ye Z; Jang YY
    Exp Biol Med (Maywood); 2021 Apr; 246(7):861-875. PubMed ID: 33467883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies to Improve the Safety of iPSC-Derived β Cells for β Cell Replacement in Diabetes.
    Pellegrini S; Zamarian V; Sordi V
    Transpl Int; 2022; 35():10575. PubMed ID: 36090777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.