These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34149963)

  • 1. The Localization of Phytohormones within the Gall-inducing Insect
    Ponce GE; Fuse M; Chan A; Connor EF
    Arthropod Plant Interact; 2021 Jun; 15(3):375-385. PubMed ID: 34149963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic Assessment of the Contribution of the
    Fiutek N; Couger MB; Pirro S; Roy SW; de la Torre JR; Connor EF
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abscisic Acid: A Potential Secreted Effector Synthesized by Phytophagous Insects for Host-Plant Manipulation.
    Seng S; Ponce GE; Andreas P; Kisiala A; De Clerck-Floate R; Miller DG; Chen MS; Price PW; Tooker JF; Emery RJN; Connor EF
    Insects; 2023 May; 14(6):. PubMed ID: 37367305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of the Specialist Aphid Uroleucon nigrotuberculatum (Homoptera: Aphididae) in Response to Host Plant Semiochemical Induction by the Gall Fly Eurosta solidaginis (Diptera: Tephritidae).
    Thomas AM; Williams RS; Swarthout RF
    Environ Entomol; 2019 Sep; 48(5):1138-1148. PubMed ID: 31222282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit.
    Tooker JF; Helms AM
    J Chem Ecol; 2014 Jul; 40(7):742-53. PubMed ID: 25027764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytohormones and willow gall induction by a gall-inducing sawfly.
    Yamaguchi H; Tanaka H; Hasegawa M; Tokuda M; Asami T; Suzuki Y
    New Phytol; 2012 Oct; 196(2):586-595. PubMed ID: 22913630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytokinins in the ball gall of Solidago altissima and in the gall forming larvae of Eurosta solidaginis.
    Mapes CC; Davies PJ
    New Phytol; 2001 Jul; 151(1):203-212. PubMed ID: 33873383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gall insects and indirect plant defenses: A case of active manipulation?
    Tooker JF; De Moraes CM
    Plant Signal Behav; 2008 Jul; 3(7):503-4. PubMed ID: 19704500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees.
    Takei M; Yoshida S; Kawai T; Hasegawa M; Suzuki Y
    J Insect Physiol; 2015 Jan; 72():43-51. PubMed ID: 25437243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geographic variation in the evolution and coevolution of a tritrophic interaction.
    Craig TP; Itami JK; Horner JD
    Evolution; 2007 May; 61(5):1137-52. PubMed ID: 17492967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.
    Oliveira DC; Isaias RMS; Fernandes GW; Ferreira BG; Carneiro RGS; Fuzaro L
    J Insect Physiol; 2016 Jan; 84():103-113. PubMed ID: 26620152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential radiation of unrelated organisms: the gall fly Eurosta solidaginis and the tumbling flower beetle Mordellistena convicta.
    Abrahamson WG; Blair CP; Eubanks MD; Morehead SA
    J Evol Biol; 2003 Sep; 16(5):781-9. PubMed ID: 14635893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytokinins Are Abundant and Widespread Among Insect Species.
    Andreas P; Kisiala A; Emery RJN; De Clerck-Floate R; Tooker JF; Price PW; Miller Iii DG; Chen MS; Connor EF
    Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32041320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding.
    Helms AM; De Moraes CM; Mescher MC; Tooker JF
    BMC Plant Biol; 2014 Jun; 14():173. PubMed ID: 24947749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge.
    Tanaka Y; Okada K; Asami T; Suzuki Y
    Biosci Biotechnol Biochem; 2013; 77(9):1942-8. PubMed ID: 24018692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A geographic mosaic of coevolution between Eurosta solidaginis (Fitch) and its host plant tall goldenrod Solidago altissima (L.).
    Craig TP; Itami JK
    Evolution; 2021 Dec; 75(12):3056-3070. PubMed ID: 34726264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indole-3-acetic acid and ball gall development on Solidago altissima.
    Mapes CC; Davies PJ
    New Phytol; 2001 Jul; 151(1):195-202. PubMed ID: 33873373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conferring High IAA Productivity on Low-IAA-Producing Organisms with PonAAS2, an Aromatic Aldehyde Synthase of a Galling Sawfly, and Identification of Its Inhibitor.
    Hiura T; Yoshida H; Miyata U; Asami T; Suzuki Y
    Insects; 2023 Jul; 14(7):. PubMed ID: 37504604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytohormones Regulate Both "Fish Scale" Galls and Cones on
    Jia M; Li Q; Hua J; Liu J; Zhou W; Qu B; Luo S
    Front Plant Sci; 2020; 11():580155. PubMed ID: 33329642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of drought on the Solidago altissima-Eurosta solidaginis-natural enemy complex: population dynamics, local extirpations, and measures of selection intensity on gall size.
    Sumerford DV; Abrahamson WG; Weis AE
    Oecologia; 2000 Feb; 122(2):240-248. PubMed ID: 28308378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.