BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34150297)

  • 1. The investigation of the influence of thermal plume and breathing on sleeping microenvironment.
    Cheng Z; Lei N; Cao G; Li B
    J Environ Health Sci Eng; 2021 Jun; 19(1):1087-1106. PubMed ID: 34150297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and simulated evaluations of airborne contaminant exposure in a room with a modified localized laminar airflow system.
    Cheng Z; Aganovic A; Cao G; Bu Z
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):30642-30663. PubMed ID: 33587275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the motion law of aerosols produced by human respiration under the action of thermal plume of different intensities.
    Feng G; Bi Y; Zhang Y; Cai Y; Huang K
    Sustain Cities Soc; 2020 Mar; 54():101935. PubMed ID: 32288992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of air stability and metabolic rate on exhaled flow.
    Xu C; Nielsen PV; Gong G; Jensen RL; Liu L
    Indoor Air; 2015 Apr; 25(2):198-209. PubMed ID: 24920328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of pulmonary ventilation rate and breathing cycle period on the risk of cross-infection.
    Ai Z; Hashimoto K; Melikov AK
    Indoor Air; 2019 Nov; 29(6):993-1004. PubMed ID: 31315146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement and prediction of indoor air quality using a breathing thermal manikin.
    Melikov A; Kaczmarczyk J
    Indoor Air; 2007 Feb; 17(1):50-9. PubMed ID: 17257152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantify impacted scope of human expired air under different head postures and varying exhalation rates.
    Zhang TT; Yin S; Wang S
    Build Environ; 2011 Oct; 46(10):1928-1936. PubMed ID: 32288011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the exhaled breath of a manikin and human subjects.
    Xu C; Nielsen PV; Gong G; Liu L; Jensen RL
    Indoor Air; 2015 Apr; 25(2):188-97. PubMed ID: 24837295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison between Temperature-Controlled Laminar Airflow Device and a Room Air-Cleaner in Reducing Exposure to Particles While Asleep.
    Spilak MP; Sigsgaard T; Takai H; Zhang G
    PLoS One; 2016; 11(11):e0166882. PubMed ID: 27898693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How human thermal plume influences near-human transport of respiratory droplets and airborne particles: a review.
    Sun S; Li J; Han J
    Environ Chem Lett; 2021; 19(3):1971-1982. PubMed ID: 33495695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation.
    Cheng Y; Lin Z
    Indoor Air; 2016 Apr; 26(2):274-85. PubMed ID: 25857272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of exhaled contaminants and personal exposure in a room using three different air distribution strategies.
    Olmedo I; Nielsen PV; Ruiz de Adana M; Jensen RL; Grzelecki P
    Indoor Air; 2012 Feb; 22(1):64-76. PubMed ID: 21815935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient and continuous effects of indoor human movement on nanoparticle concentrations in a sitting person's breathing zone.
    Wu J; Weng W; Shen L; Fu M
    Sci Total Environ; 2022 Jan; 805():149970. PubMed ID: 34543798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human convective boundary layer and its interaction with room ventilation flow.
    Licina D; Melikov A; Sekhar C; Tham KW
    Indoor Air; 2015 Feb; 25(1):21-35. PubMed ID: 24750235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Qualitative and quantitative schlieren optical measurement of the human thermal plume.
    Gena AW; Voelker C; Settles GS
    Indoor Air; 2020 Jul; 30(4):757-766. PubMed ID: 32302432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical studies on the microclimate around a sleeping person and the related thermal neutrality issues.
    Pan D; Chan M; Deng S; Xia L; Xu X
    Ergonomics; 2011 Nov; 54(11):1088-100. PubMed ID: 22026952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breathing thermal manikins for indoor environment assessment: important characteristics and requirements.
    Melikov A
    Eur J Appl Physiol; 2004 Sep; 92(6):710-3. PubMed ID: 15168126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the human body's microclimate using a thermal manikin.
    Voelker C; Maempel S; Kornadt O
    Indoor Air; 2014 Dec; 24(6):567-79. PubMed ID: 24666331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TR-PIV measurement of exhaled flow using a breathing thermal manikin.
    Feng L; Yao S; Sun H; Jiang N; Liu J
    Build Environ; 2015 Dec; 94():683-693. PubMed ID: 32288037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postural changes in nasal and pulmonary resistance in subjects with asthma.
    Duggan CJ; Watson RA; Pride NB
    J Asthma; 2004 Oct; 41(7):701-7. PubMed ID: 15584628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.