These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34150859)

  • 1. Corrigendum: [A Comparative Study of Adaptive Interlimb Coordination Mechanisms for Self-Organized Robot Locomotion].
    Sun T; Xiong X; Dai Z; Owaki D; Manoonpong P
    Front Robot AI; 2021; 8():702167. PubMed ID: 34150859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Study of Adaptive Interlimb Coordination Mechanisms for Self-Organized Robot Locomotion.
    Sun T; Xiong X; Dai Z; Owaki D; Manoonpong P
    Front Robot AI; 2021; 8():638684. PubMed ID: 33912596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach.
    Owaki D; Goda M; Miyazawa S; Ishiguro A
    Front Neurorobot; 2017; 11():29. PubMed ID: 28649197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrigendum: Small-Sized Reconfigurable Quadruped Robot With Multiple Sensory Feedback for Studying Adaptive and Versatile Behaviors.
    Sun T; Xiong X; Dai Z; Manoonpong P
    Front Neurorobot; 2021; 15():746056. PubMed ID: 34483874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review.
    Aoi S; Manoonpong P; Ambe Y; Matsuno F; Wörgötter F
    Front Neurorobot; 2017; 11():39. PubMed ID: 28878645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study.
    Aoi S; Kondo T; Hayashi N; Yanagihara D; Aoki S; Yamaura H; Ogihara N; Funato T; Tomita N; Senda K; Tsuchiya K
    Biol Cybern; 2013 Apr; 107(2):201-16. PubMed ID: 23430278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-Sized Reconfigurable Quadruped Robot With Multiple Sensory Feedback for Studying Adaptive and Versatile Behaviors.
    Sun T; Xiong X; Dai Z; Manoonpong P
    Front Neurorobot; 2020; 14():14. PubMed ID: 32174822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decentralized control mechanism underlying interlimb coordination of millipedes.
    Kano T; Sakai K; Yasui K; Owaki D; Ishiguro A
    Bioinspir Biomim; 2017 Apr; 12(3):036007. PubMed ID: 28375850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.
    Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K
    J R Soc Interface; 2015 Sep; 12(110):0542. PubMed ID: 26289658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator.
    Aoi S; Ogihara N; Funato T; Sugimoto Y; Tsuchiya K
    Biol Cybern; 2010 May; 102(5):373-87. PubMed ID: 20217427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
    Ambe Y; Aoi S; Nachstedt T; Manoonpong P; Wörgötter F; Matsuno F
    PLoS One; 2018; 13(2):e0192469. PubMed ID: 29489831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of quadrupedal locomotion in the kitten.
    Howland DR; Bregman BS; Goldberger ME
    Exp Neurol; 1995 Oct; 135(2):93-107. PubMed ID: 7589328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decentralized control with cross-coupled sensory feedback between body and limbs in sprawling locomotion.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Bioinspir Biomim; 2019 Sep; 14(6):066010. PubMed ID: 31469116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal control of interlimb coordination during transverse split-belt locomotion with 1:1 or 2:1 coupling patterns in intact adult cats.
    Thibaudier Y; Frigon A
    J Neurophysiol; 2014 Oct; 112(8):2006-18. PubMed ID: 25057143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrigendum: Benchmark Datasets for Bilateral Lower-Limb Neuromechanical Signals from Wearable Sensors during Unassisted Locomotion in Able-Bodied Individuals.
    Hu B; Rouse E; Hargrove L
    Front Robot AI; 2018; 5():127. PubMed ID: 33502385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new learning paradigm: adaptive changes in interlimb coordination during perturbed locomotion in decerebrate cats.
    Yanagihara D; Udo M; Kondo I; Yoshida T
    Neurosci Res; 1993 Dec; 18(3):241-4. PubMed ID: 8127473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrigendum: A Socially Adaptable Framework for Human-Robot Interaction.
    Tanevska A; Rea F; Sandini G; Cañamero L; Sciutti A
    Front Robot AI; 2021; 8():812583. PubMed ID: 34970600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neural control of interlimb coordination during mammalian locomotion.
    Frigon A
    J Neurophysiol; 2017 Jun; 117(6):2224-2241. PubMed ID: 28298308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interlimb coordination during fictive locomotion in the thalamic cat.
    Orsal D; Cabelguen JM; Perret C
    Exp Brain Res; 1990; 82(3):536-46. PubMed ID: 2292272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of arm and leg movement during human locomotion.
    Zehr EP; Duysens J
    Neuroscientist; 2004 Aug; 10(4):347-61. PubMed ID: 15271262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.