These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34151074)
1. A General Route of Using Lignite Depolymerized Derivatives for Catalyst Construction: Insights into the Effects of the Derivative Structures and Solvents. Hao J; Han L; Yang K; Li N; He R; Zhi K; Liu Q ACS Omega; 2021 Jun; 6(23):14926-14937. PubMed ID: 34151074 [TBL] [Abstract][Full Text] [Related]
2. Ruthenium ion catalytic oxidation depolymerization of lignite under ultra-low dosage of RuCl Wang Q; Zhang Y; Wang M; Hao J; Le S; Liu Q; Li N; Zhou H RSC Adv; 2023 Jan; 13(7):4351-4360. PubMed ID: 36744290 [TBL] [Abstract][Full Text] [Related]
3. Reusability Investigation of a Ruthenium Catalyst during Ruthenium Ion-Catalyzed Oxidative Depolymerization of Lignite for the Production of Valuable Organic Acids. Yao X; Wang X; Chen Y; Zhang L; Liu Q; He R; Zhou H; Cong X ACS Omega; 2021 Oct; 6(40):26613-26622. PubMed ID: 34661015 [TBL] [Abstract][Full Text] [Related]
4. A novel and highly efficient Zr-containing catalyst supported by biomass-derived sodium carboxymethyl cellulose for hydrogenation of furfural. Hao J; Zhang Y; Zhang T; Zhou H; Liu Q; Zhi K; Li N; He R Front Chem; 2022; 10():966270. PubMed ID: 35936079 [TBL] [Abstract][Full Text] [Related]
5. Metal ion-induced separation of valuable organic acids from a depolymerized mixture of lignite without using organic solvents. Hao J; Han L; Yang K; Zhao H; Li X; Ban Y; Li N; Zhou H; Liu Q RSC Adv; 2020 Jan; 10(6):3479-3486. PubMed ID: 35497742 [TBL] [Abstract][Full Text] [Related]
6. A Novel Tannic Acid-Based Carbon-Supported Cobalt Catalyst for Transfer Hydrogenation of Biomass Derived Ethyl Levulinate. Wang M; Yao X; Chen Y; Lin B; Li N; Zhi K; Liu Q; Zhou H Front Chem; 2022; 10():964128. PubMed ID: 35898969 [TBL] [Abstract][Full Text] [Related]
7. Low-Temperature Catalytic Transfer Hydrogenation of Biomass-Derived Furfural over Irreversibly Adsorbed and Highly Dispersed Zr(IV) Species. Cen S; Li L; Li Y; Wan C; Linghu W; Wang L Inorg Chem; 2024 Jul; 63(29):13775-13784. PubMed ID: 38988096 [TBL] [Abstract][Full Text] [Related]
8. A novel hafnium-graphite oxide catalyst for the Meerwein-Ponndorf-Verley reaction and the activation effect of the solvent. Li X; Du Z; Wu Y; Zhen Y; Shao R; Li B; Chen C; Liu Q; Zhou H RSC Adv; 2020 Mar; 10(17):9985-9995. PubMed ID: 35498581 [TBL] [Abstract][Full Text] [Related]
9. Cascade Reductive Etherification of Bioderived Aldehydes over Zr-Based Catalysts. Shinde S; Rode C ChemSusChem; 2017 Oct; 10(20):4090-4101. PubMed ID: 28868763 [TBL] [Abstract][Full Text] [Related]
10. Solid Foam Ru/C Catalysts for Sugar Hydrogenation to Sugar Alcohols-Preparation, Characterization, Activity, and Selectivity. Araujo-Barahona G; Eränen K; Oña JP; Murzin D; García-Serna J; Salmi T Ind Eng Chem Res; 2022 Feb; 61(7):2734-2747. PubMed ID: 35241873 [TBL] [Abstract][Full Text] [Related]
11. The construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein-Ponndorf-Verley reduction. Wang X; Hao J; Deng L; Zhao H; Liu Q; Li N; He R; Zhi K; Zhou H RSC Adv; 2020 Feb; 10(12):6944-6952. PubMed ID: 35493886 [TBL] [Abstract][Full Text] [Related]
12. Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein-Ponndorf-Verley reductions. Wang Z; Xie C; Li X; Nie J; Yang H; Zhang Z Chem Commun (Camb); 2022 Mar; 58(25):4067-4070. PubMed ID: 35262544 [TBL] [Abstract][Full Text] [Related]
13. Study on the Performance of the Zr-Modified Cu-SSZ-13 Catalyst for Low-Temperature NH Du H; Yang S; Li K; Shen Q; Li M; Wang X; Fan C ACS Omega; 2022 Dec; 7(49):45144-45152. PubMed ID: 36530236 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen-doped ordered mesoporous carbon supported ruthenium metallic nanoparticles: Opportunity for efficient hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran by catalytic transfer hydrogenation. Buta JG; Dame B; Ayala T Heliyon; 2024 Mar; 10(5):e26690. PubMed ID: 38455557 [TBL] [Abstract][Full Text] [Related]
15. Influence of coal treatments on the Ni loading mechanism of Ni-loaded lignite char catalysts. Tipo R; Chaichana C; Noda R; Chaiklangmuang S RSC Adv; 2021 Oct; 11(56):35624-35643. PubMed ID: 35493187 [TBL] [Abstract][Full Text] [Related]
16. Selective Transfer Hydrogenation of Furfural into Furfuryl Alcohol on Zr-Containing Catalysts Using Lower Alcohols as Hydrogen Donors. Zhang J; Dong K; Luo W; Guan H ACS Omega; 2018 Jun; 3(6):6206-6216. PubMed ID: 31458803 [TBL] [Abstract][Full Text] [Related]
17. Impact of the morphological and chemical properties of copper-zirconium-SBA-15 catalysts on the conversion and selectivity in carbon dioxide hydrogenation. Atakan A; Keraudy J; Mäkie P; Hulteberg C; Björk EM; Odén M J Colloid Interface Sci; 2019 Jun; 546():163-173. PubMed ID: 30913490 [TBL] [Abstract][Full Text] [Related]
18. Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO Rungtaweevoranit B; Baek J; Araujo JR; Archanjo BS; Choi KM; Yaghi OM; Somorjai GA Nano Lett; 2016 Dec; 16(12):7645-7649. PubMed ID: 27960445 [TBL] [Abstract][Full Text] [Related]
19. Catalytic performance of activated lignite chars on biomass tar cracking. Li C; Zhang H; Gong X; Zhang Y Environ Sci Pollut Res Int; 2023 Apr; 30(20):57331-57339. PubMed ID: 36964466 [TBL] [Abstract][Full Text] [Related]
20. Theoretical studies on the reaction mechanism of oxidation of primary alcohols by Zn/Cu(ii)-phenoxyl radical catalyst. Cheng L; Wang J; Wang M; Wu Z Dalton Trans; 2009 May; (17):3286-97. PubMed ID: 19421631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]