BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34151251)

  • 41. Bottom-Up and Top-Down Approaches to Explore Sodium Dodecyl Sulfate and Soluplus on the Crystallization Inhibition and Dissolution of Felodipine Extrudates.
    Chen J; Chen Y; Huang W; Wang H; Du Y; Xiong S
    J Pharm Sci; 2018 Sep; 107(9):2366-2376. PubMed ID: 29738699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of Ethylene Oxide-co-propylene Oxide for Dissolution Enhancement of Hot-Melt Extruded Solid Dispersions.
    Hurley D; Potter CB; Walker GM; Higginbotham CL
    J Pharm Sci; 2018 May; 107(5):1372-1382. PubMed ID: 29410037
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution.
    Purohit HS; Taylor LS
    Pharm Res; 2017 Dec; 34(12):2842-2861. PubMed ID: 28956218
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods.
    Sethia S; Squillante E
    Int J Pharm; 2004 Mar; 272(1-2):1-10. PubMed ID: 15019063
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Mechanistic Model for Predicting the Physical Stability of Amorphous Solid Dispersions.
    Ojo AT; Lee PI
    J Pharm Sci; 2021 Apr; 110(4):1495-1512. PubMed ID: 32818440
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture.
    Rumondor AC; Marsac PJ; Stanford LA; Taylor LS
    Mol Pharm; 2009; 6(5):1492-505. PubMed ID: 19634917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels.
    Sun DD; Ju TC; Lee PI
    Eur J Pharm Biopharm; 2012 May; 81(1):149-58. PubMed ID: 22233548
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluate the ability of PVP to inhibit crystallization of amorphous solid dispersions by density functional theory and experimental verify.
    Wang B; Wang D; Zhao S; Huang X; Zhang J; Lv Y; Liu X; Lv G; Ma X
    Eur J Pharm Sci; 2017 Jan; 96():45-52. PubMed ID: 27568852
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the inherent properties of Soluplus and its application in ibuprofen solid dispersions generated by microwave-quench cooling technology.
    Shi NQ; Lai HW; Zhang Y; Feng B; Xiao X; Zhang HM; Li ZQ; Qi XR
    Pharm Dev Technol; 2018 Jul; 23(6):573-586. PubMed ID: 27824281
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation into the Solid-State Properties and Dissolution Profile of Spray-Dried Ternary Amorphous Solid Dispersions: A Rational Step toward the Design and Development of a Multicomponent Amorphous System.
    Baghel S; Cathcart H; O'Reilly NJ
    Mol Pharm; 2018 Sep; 15(9):3796-3812. PubMed ID: 30020788
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Utilizing Drug Amorphous Solid Dispersions for the Preparation of Dronedarone per os Formulations.
    Kapourani A; Manioudaki AE; Kontogiannopoulos KN; Barmpalexis P
    Polymers (Basel); 2023 Nov; 15(21):. PubMed ID: 37959973
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.
    Chen Y; Wang S; Wang S; Liu C; Su C; Hageman M; Hussain M; Haskell R; Stefanski K; Qian F
    Pharm Res; 2016 Oct; 33(10):2445-58. PubMed ID: 27283830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amorphous Solid Dispersions Containing Residual Crystallinity: Competition Between Dissolution and Matrix Crystallization.
    Moseson DE; Corum ID; Lust A; Altman KJ; Hiew TN; Eren A; Nagy ZK; Taylor LS
    AAPS J; 2021 May; 23(4):69. PubMed ID: 34002256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reactive Melt Extrusion To Improve the Dissolution Performance and Physical Stability of Naproxen Amorphous Solid Dispersions.
    Liu X; Zhou L; Zhang F
    Mol Pharm; 2017 Mar; 14(3):658-673. PubMed ID: 28135108
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elucidating the effect of crystallization on drug release from amorphous solid dispersions in soluble and insoluble carriers.
    Ojo AT; Ma C; Lee PI
    Int J Pharm; 2020 Dec; 591():120005. PubMed ID: 33132149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of Polymer Type on Thermal Degradation of Amorphous Solid Dispersions Containing Ritonavir.
    Alvarenga BR; Moseson DE; Carneiro RL; Taylor LS
    Mol Pharm; 2022 Jan; 19(1):332-344. PubMed ID: 34910485
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Free flowing solid dispersions of the anti-HIV drug UC 781 with Poloxamer 407 and a maximum amount of TPGS 1000: investigating the relationship between physicochemical characteristics and dissolution behaviour.
    Goddeeris C; Van den Mooter G
    Eur J Pharm Sci; 2008 Sep; 35(1-2):104-13. PubMed ID: 18644442
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Understanding the Effect of Nucleation in Amorphous Solid Dispersions through Time-Temperature Transformation.
    Lalge R; Kumar NSK; Suryanarayanan R
    Mol Pharm; 2023 Aug; 20(8):4196-4209. PubMed ID: 37358932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular dynamics simulation of amorphous indomethacin-poly(vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions.
    Xiang TX; Anderson BD
    J Pharm Sci; 2013 Mar; 102(3):876-91. PubMed ID: 23280486
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hot-melt extruded hydroxypropyl methylcellulose acetate succinate based amorphous solid dispersions: Impact of polymeric combinations on supersaturation kinetics and dissolution performance.
    Butreddy A; Sarabu S; Almutairi M; Ajjarapu S; Kolimi P; Bandari S; Repka MA
    Int J Pharm; 2022 Mar; 615():121471. PubMed ID: 35041915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.