These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34151298)

  • 1. Generation of locus-specific degradable tag knock-ins in mouse and human cell lines.
    Damhofer H; Radzisheuskaya A; Helin K
    STAR Protoc; 2021 Jun; 2(2):100575. PubMed ID: 34151298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for efficient CRISPR-Cas9-mediated fluorescent tag knockin in hard-to-transfect erythroid cell lines.
    Deleuze V; Soler E; Andrieu-Soler C
    STAR Protoc; 2024 Jun; 5(2):103016. PubMed ID: 38640065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient biallelic knock-in in mouse embryonic stem cells by in vivo-linearization of donor and transient inhibition of DNA polymerase θ/DNA-PK.
    Arai D; Nakao Y
    Sci Rep; 2021 Sep; 11(1):18132. PubMed ID: 34518609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of knock-in degron tags for endogenous proteins in mice using the dTAG system.
    Abuhashem A; Hadjantonakis AK
    STAR Protoc; 2022 Sep; 3(3):101660. PubMed ID: 36097386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of epitope tag knock-in mice with CRISPR-Cas9 to study the function of endogenous proteins.
    Zhang Z
    STAR Protoc; 2023 Sep; 4(3):102518. PubMed ID: 37585297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creating Knockin Alleles in Mouse Embryonic Stem Cells by CRISPR/Cas9-Mediated Homologous Recombination Without Drug Selection.
    Liu P; Li Y; Lei J; Dong L
    Methods Mol Biol; 2019; 1874():115-137. PubMed ID: 30353511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol to study sufficiency of
    Pachano T; Rada-Iglesias A
    STAR Protoc; 2022 Sep; 3(3):101492. PubMed ID: 35769926
    [No Abstract]   [Full Text] [Related]  

  • 8. Production of knock-in mice in a single generation from embryonic stem cells.
    Ukai H; Kiyonari H; Ueda HR
    Nat Protoc; 2017 Dec; 12(12):2513-2530. PubMed ID: 29189772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for Efficient CRISPR/Cas9/AAV-Mediated Homologous Recombination in Mouse Hematopoietic Stem and Progenitor Cells.
    Tran NT; Trombke J; Rajewsky K; Chu VT
    STAR Protoc; 2020 Jun; 1(1):100028. PubMed ID: 32685932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for auxin-inducible depletion of the RNA-binding protein PTBP1 in mouse embryonic stem cells.
    Kainov Y; Zhuravskaya A; Makeyev EV
    STAR Protoc; 2023 Dec; 4(4):102644. PubMed ID: 37862173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of auxin inducible degron (AID) knock-in cell lines for targeted protein degradation in mammalian cells.
    Adhikari B; Narain A; Wolf E
    STAR Protoc; 2021 Dec; 2(4):100949. PubMed ID: 34849487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locus-Specific Knock-In of a Degradable Tag for Target Validation Studies.
    Brand M; Winter GE
    Methods Mol Biol; 2019; 1953():105-119. PubMed ID: 30912018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using piggyBac transposon gene expression vectors to transfect
    Yamada M; Sugawara T; Usami S; Nakanishi R; Akustu H
    STAR Protoc; 2021 Sep; 2(3):100811. PubMed ID: 34541557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected genomic rearrangements at targeted loci associated with CRISPR/Cas9-mediated knock-in.
    Rezza A; Jacquet C; Le Pillouer A; Lafarguette F; Ruptier C; Billandon M; Isnard Petit P; Trouttet S; Thiam K; Fraichard A; Chérifi Y
    Sci Rep; 2019 Mar; 9(1):3486. PubMed ID: 30837594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology arms of targeting vectors for gene insertions and CRISPR/Cas9 technology: size does not matter; quality control of targeted clones does.
    Petrezselyova S; Kinsky S; Truban D; Sedlacek R; Burtscher I; Lickert H
    Cell Mol Biol Lett; 2015 Dec; 20(5):773-87. PubMed ID: 26540224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting CRISPR/Cas9 to engineer precise segmental deletions in mouse embryonic stem cells.
    Elango R; Panday A; Willis NA; Scully R
    STAR Protoc; 2022 Sep; 3(3):101551. PubMed ID: 36042887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of an allelic series of knock-in mice using recombinase-mediated cassette exchange (RMCE).
    Roebroek AJ; Van Gool B
    Methods Mol Biol; 2014; 1194():63-76. PubMed ID: 25064098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 allows efficient and complete knock-in of a destabilization domain-tagged essential protein in a human cell line, allowing rapid knockdown of protein function.
    Park A; Won ST; Pentecost M; Bartkowski W; Lee B
    PLoS One; 2014; 9(4):e95101. PubMed ID: 24743236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for Establishing Mouse Embryonic Stem Cells to Study Histone Inheritance Pattern at Single-Cell Resolution.
    Ma B; Trieu TJ; Habib SJ; Chen X
    STAR Protoc; 2020 Dec; 1(3):100178. PubMed ID: 33377072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.