These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34151298)

  • 21. Fast
    Ngondo RP; Cohen-Tannoudji M; Ciaudo C
    STAR Protoc; 2020 Dec; 1(3):100127. PubMed ID: 33377021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A quick, cheap, and reliable protocol for immunofluorescence of pluripotent and differentiating mouse embryonic stem cells in 2D and 3D colonies.
    Kodba S; Chaigne A
    STAR Protoc; 2023 Mar; 4(1):102000. PubMed ID: 36853702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Generation of Large-Fragment Knock-In Mouse Models Using 2-Cell (2C)-Homologous Recombination (HR)-CRISPR.
    Gu B; Posfai E; Gertsenstein M; Rossant J
    Curr Protoc Mouse Biol; 2020 Mar; 10(1):e67. PubMed ID: 31912993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System.
    Li S; Xue H; Wu J; Rao MS; Kim DH; Deng W; Liu Y
    Stem Cells Dev; 2015 Dec; 24(24):2925-42. PubMed ID: 26414932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering Inducible Knock-In Mice to Model Oncogenic Brain Tumor Mutations from Endogenous Loci.
    Larson JD; Baker SJ
    Methods Mol Biol; 2019; 1869():207-230. PubMed ID: 30324526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs.
    Ruan J; Li H; Xu K; Wu T; Wei J; Zhou R; Liu Z; Mu Y; Yang S; Ouyang H; Chen-Tsai RY; Li K
    Sci Rep; 2015 Sep; 5():14253. PubMed ID: 26381350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homology-independent multiallelic disruption via CRISPR/Cas9-based knock-in yields distinct functional outcomes in human cells.
    Zhang C; He X; Kwok YK; Wang F; Xue J; Zhao H; Suen KW; Wang CC; Ren J; Chen GG; Lai PBS; Li J; Xia Y; Chan AM; Chan WY; Feng B
    BMC Biol; 2018 Dec; 16(1):151. PubMed ID: 30593266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi.
    Takata N; Sakakura E; Sakuma T; Yamamoto T
    Methods Mol Biol; 2017; 1622():269-292. PubMed ID: 28674815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression analysis of the endogenous Zscan4 locus and its coding proteins in mouse ES cells and preimplantation embryos.
    Ishiguro KI; Nakatake Y; Chikazawa-Nohtomi N; Kimura H; Akiyama T; Oda M; Ko SB; Ko MS
    In Vitro Cell Dev Biol Anim; 2017 Feb; 53(2):179-190. PubMed ID: 27699651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of a series of knock-in alleles using RMCE in ES cells.
    Roebroek AJ; Gordts PL; Reekmans S
    Methods Mol Biol; 2011; 693():277-81. PubMed ID: 21080286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes.
    Chu VT; Weber T; Graf R; Sommermann T; Petsch K; Sack U; Volchkov P; Rajewsky K; Kühn R
    BMC Biotechnol; 2016 Jan; 16():4. PubMed ID: 26772810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus.
    Yang GS; Banks KG; Bonaguro RJ; Wilson G; Dreolini L; de Leeuw CN; Liu L; Swanson DJ; Goldowitz D; Holt RA; Simpson EM
    Genomics; 2009 Mar; 93(3):196-204. PubMed ID: 18950699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generating CRISPR/Cas9 Mediated Monoallelic Deletions to Study Enhancer Function in Mouse Embryonic Stem Cells.
    Moorthy SD; Mitchell JA
    J Vis Exp; 2016 Apr; (110):e53552. PubMed ID: 27078492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Cutting and Integrating CRISPR Plasmids Enable Targeted Genomic Integration of Genetic Payloads for Rapid Cell Engineering.
    Bloemberg D; Sosa-Miranda CD; Nguyen T; Weeratna RD; McComb S
    CRISPR J; 2021 Feb; 4(1):104-119. PubMed ID: 33616439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electroporation and genetic supply of Cas9 increase the generation efficiency of CRISPR/Cas9 knock-in alleles in C57BL/6J mouse zygotes.
    Alghadban S; Bouchareb A; Hinch R; Hernandez-Pliego P; Biggs D; Preece C; Davies B
    Sci Rep; 2020 Oct; 10(1):17912. PubMed ID: 33087834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calculating RNA degradation rates using large-scale normalization in mouse embryonic stem cells.
    Viegas JO; Fishman L; Meshorer E; Rabani M
    STAR Protoc; 2023 Sep; 4(3):102534. PubMed ID: 37656628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protocol for biallelic tagging of an endogenous gene using CRISPR-Cas9 in human cells.
    Kong N; Chan YW
    STAR Protoc; 2023 May; 4(2):102286. PubMed ID: 37252842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Embryo-Based Large Fragment Knock-in in Mammals: Why, How and What's Next.
    Erwood S; Gu B
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32013077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is mouse embryonic stem cell technology obsolete?
    Skarnes WC
    Genome Biol; 2015 May; 16(1):109. PubMed ID: 26013980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene Knock-in by CRISPR/Cas9 and Cell Sorting in Macrophage and T Cell Lines.
    Zhang L; Huang R; Lu L; Fu R; Guo G; Gu Y; Liu Z; He L; Malissen M; Liang Y
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.