These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
3. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications. Yang S; Jang L; Kim S; Yang J; Yang K; Cho SW; Lee JY Macromol Biosci; 2016 Nov; 16(11):1653-1661. PubMed ID: 27455895 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441 [TBL] [Abstract][Full Text] [Related]
5. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
6. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review. Distler T; Boccaccini AR Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385 [TBL] [Abstract][Full Text] [Related]
7. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210 [TBL] [Abstract][Full Text] [Related]
8. Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering. Distler T; Polley C; Shi F; Schneidereit D; Ashton MD; Friedrich O; Kolb JF; Hardy JG; Detsch R; Seitz H; Boccaccini AR Adv Healthc Mater; 2021 May; 10(9):e2001876. PubMed ID: 33711199 [TBL] [Abstract][Full Text] [Related]
9. Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. Effects of linear poly(acrylic acid) chains on rheology. Stile RA; Chung E; Burghardt WR; Healy KE J Biomater Sci Polym Ed; 2004; 15(7):865-78. PubMed ID: 15318797 [TBL] [Abstract][Full Text] [Related]
10. Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles. Aparicio-Collado JL; Novoa JJ; Molina-Mateo J; Torregrosa-Cabanilles C; Serrano-Aroca Á; Sabater I Serra R Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375726 [TBL] [Abstract][Full Text] [Related]
11. Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Yu C; Yao F; Li J Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350 [TBL] [Abstract][Full Text] [Related]
12. Three-Dimensional Printability of an ECM-Based Gelatin Methacryloyl (GelMA) Biomaterial for Potential Neuroregeneration. Da Silva K; Kumar P; van Vuuren SF; Pillay V; Choonara YE ACS Omega; 2021 Aug; 6(33):21368-21383. PubMed ID: 34471741 [TBL] [Abstract][Full Text] [Related]
13. 3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review. Athukorala SS; Tran TS; Balu R; Truong VK; Chapman J; Dutta NK; Roy Choudhury N Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540900 [TBL] [Abstract][Full Text] [Related]
14. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering. Yang B; Yao F; Hao T; Fang W; Ye L; Zhang Y; Wang Y; Li J; Wang C Adv Healthc Mater; 2016 Feb; 5(4):474-88. PubMed ID: 26626543 [TBL] [Abstract][Full Text] [Related]
16. 3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties. Mohanty S; Alm M; Hemmingsen M; Dolatshahi-Pirouz A; Trifol J; Thomsen P; Dufva M; Wolff A; Emnéus J Biomacromolecules; 2016 Apr; 17(4):1321-9. PubMed ID: 26902925 [TBL] [Abstract][Full Text] [Related]
17. Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation. Liu Y; Zhang K; Ma J; Vancso GJ ACS Appl Mater Interfaces; 2017 Jan; 9(1):901-908. PubMed ID: 28026935 [TBL] [Abstract][Full Text] [Related]
18. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Zhou T; Yuk H; Hu F; Wu J; Tian F; Roh H; Shen Z; Gu G; Xu J; Lu B; Zhao X Nat Mater; 2023 Jul; 22(7):895-902. PubMed ID: 37322141 [TBL] [Abstract][Full Text] [Related]
19. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application. Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925 [TBL] [Abstract][Full Text] [Related]
20. 3D printing of conducting polymers. Yuk H; Lu B; Lin S; Qu K; Xu J; Luo J; Zhao X Nat Commun; 2020 Mar; 11(1):1604. PubMed ID: 32231216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]