These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 34151629)
21. Acoustic Ejection Mass Spectrometry: A Fully Automatable Technology for High-Throughput Screening in Drug Discovery. Simon RP; Häbe TT; Ries R; Winter M; Wang Y; Fernández-Montalván A; Bischoff D; Runge F; Reindl W; Luippold AH; Büttner FH SLAS Discov; 2021 Sep; 26(8):961-973. PubMed ID: 34308708 [TBL] [Abstract][Full Text] [Related]
22. Affinity selection-mass spectrometry for the discovery of pharmacologically active compounds from combinatorial libraries and natural products. Muchiri RN; van Breemen RB J Mass Spectrom; 2021; 56(5):e4647. PubMed ID: 32955158 [TBL] [Abstract][Full Text] [Related]
23. Cellular Assays with a Molecular Endpoint Measured by SAMDI Mass Spectrometry. Berns EJ; Cabezas MD; Mrksich M Small; 2016 Jul; 12(28):3811-8. PubMed ID: 27240220 [TBL] [Abstract][Full Text] [Related]
24. Revolution of Small Molecule Drug Discovery by Affinity Selection-Mass Spectrometry Technology. Motoyaji T Chem Pharm Bull (Tokyo); 2020; 68(3):191-193. PubMed ID: 32115525 [TBL] [Abstract][Full Text] [Related]
25. Characterizing Enzyme Cooperativity with Imaging SAMDI-MS. Grant J; Kimmel BR; Szymczak LC; Roll J; Mrksich M Chemistry; 2022 Feb; 28(12):e202103807. PubMed ID: 34890480 [TBL] [Abstract][Full Text] [Related]
26. Extending matrix-assisted laser desorption/ionization triple quadrupole mass spectrometry enzyme screening assays to targets with small molecule substrates. Rathore R; Corr JJ; Lebre DT; Seibel WL; Greis KD Rapid Commun Mass Spectrom; 2009 Oct; 23(20):3293-300. PubMed ID: 19757451 [TBL] [Abstract][Full Text] [Related]
27. Traceless Immobilization of Analytes for High-Throughput Experiments with SAMDI Mass Spectrometry. Helal KY; Alamgir A; Berns EJ; Mrksich M J Am Chem Soc; 2018 Jul; 140(26):8060-8063. PubMed ID: 29901996 [TBL] [Abstract][Full Text] [Related]
28. Cell-Based Screening: Cellular Assays with a Molecular Endpoint Measured by SAMDI Mass Spectrometry (Small 28/2016). Berns EJ; Cabezas MD; Mrksich M Small; 2016 Jul; 12(28):3810. PubMed ID: 27439735 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of laser diode thermal desorption (LDTD) coupled with tandem mass spectrometry (MS/MS) for support of in vitro drug discovery assays: increasing scope, robustness and throughput of the LDTD technique for use with chemically diverse compound libraries. Beattie I; Smith A; Weston DJ; White P; Szwandt S; Sealey L J Pharm Biomed Anal; 2012 Feb; 59():18-28. PubMed ID: 22071442 [TBL] [Abstract][Full Text] [Related]
31. High-Throughput MALDI-TOF Mass Spectrometry-Based Deubiquitylating Enzyme Assay for Drug Discovery. De Cesare V; Davies P Methods Mol Biol; 2023; 2591():123-134. PubMed ID: 36350546 [TBL] [Abstract][Full Text] [Related]
32. Mass spectrometry for fragment screening. Chan DS; Whitehouse AJ; Coyne AG; Abell C Essays Biochem; 2017 Nov; 61(5):465-473. PubMed ID: 28986384 [TBL] [Abstract][Full Text] [Related]
33. Acoustic Sample Deposition MALDI-MS (ASD-MALDI-MS): A Novel Process Flow for Quality Control Screening of Compound Libraries. Chin J; Wood E; Peters GS; Drexler DM J Lab Autom; 2016 Feb; 21(1):204-7. PubMed ID: 26203056 [TBL] [Abstract][Full Text] [Related]
34. Establishing MALDI-TOF as Versatile Drug Discovery Readout to Dissect the PTP1B Enzymatic Reaction. Winter M; Bretschneider T; Kleiner C; Ries R; Hehn JP; Redemann N; Luippold AH; Bischoff D; Büttner FH SLAS Discov; 2018 Jul; 23(6):561-573. PubMed ID: 29466676 [TBL] [Abstract][Full Text] [Related]
35. Automated MALDI Target Preparation Concept: Providing Ultra-High-Throughput Mass Spectrometry-Based Screening for Drug Discovery. Winter M; Ries R; Kleiner C; Bischoff D; Luippold AH; Bretschneider T; Büttner FH SLAS Technol; 2019 Apr; 24(2):209-221. PubMed ID: 30074850 [TBL] [Abstract][Full Text] [Related]
36. Screening potential FDA-approved inhibitors of the SARS-CoV-2 major protease 3CL Liu WS; Li HG; Ding CH; Zhang HX; Wang RR; Li JQ Aging (Albany NY); 2021 Mar; 13(5):6258-6272. PubMed ID: 33678621 [TBL] [Abstract][Full Text] [Related]
37. RNA-ALIS: Methodology for screening soluble RNAs as small molecule targets using ALIS affinity-selection mass spectrometry. Rizvi NF; Nickbarg EB Methods; 2019 Sep; 167():28-38. PubMed ID: 31059829 [TBL] [Abstract][Full Text] [Related]
38. High-Throughput Covalent Modifier Screening with Acoustic Ejection Mass Spectrometry. Wen X; Liu C; Tovar K; Curran P; Richards M; Agrawal S; Johnstone R; Loy RE; Methot JL; Mansueto MS; Koglin M; Wildey MJ; Burton L; Covey TR; Bateman KP; Kavana M; McLaren DG J Am Chem Soc; 2024 Jul; 146(29):19792-19799. PubMed ID: 38994607 [TBL] [Abstract][Full Text] [Related]
39. In silico Study to Evaluate the Antiviral Activity of Novel Structures against 3C-like Protease of Novel Coronavirus (COVID-19) and SARS-CoV. Chunduru K; Sankhe R; Begum F; Sodum N; Kumar N; Kishore A; Shenoy RR; Rao CM; Saravu K Med Chem; 2021; 17(4):380-395. PubMed ID: 32720605 [TBL] [Abstract][Full Text] [Related]
40. Differential analyte derivatization enables unbiased MALDI-TOF-based high-throughput screening: A proof-of-concept study for the discovery of catechol-o-methyltransferase inhibitors. Winter M; Simon RP; Wang Y; Bretschneider T; Bauer M; Magarkar A; Reindl W; Fernández-Montalván A; Montel F; Büttner FH SLAS Discov; 2022 Jul; 27(5):287-297. PubMed ID: 35597517 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]