These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 34151657)

  • 21. Edible Scaffolds Based on Non-Mammalian Biopolymers for Myoblast Growth.
    Enrione J; Blaker JJ; Brown DI; Weinstein-Oppenheimer CR; Pepczynska M; Olguín Y; Sánchez E; Acevedo CA
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29292759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioprocessing by Decellularized Scaffold Biomaterials in Cultured Meat: A Review.
    Lu H; Ying K; Shi Y; Liu D; Chen Q
    Bioengineering (Basel); 2022 Dec; 9(12):. PubMed ID: 36550993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene based scaffolds on bone tissue engineering.
    Shadjou N; Hasanzadeh M; Khalilzadeh B
    Bioengineered; 2018 Jan; 9(1):38-47. PubMed ID: 29095664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.
    Lv Q; Deng M; Ulery BD; Nair LS; Laurencin CT
    Clin Orthop Relat Res; 2013 Aug; 471(8):2422-33. PubMed ID: 23436161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-scale cultured meat production: Trends, challenges and promising biomanufacturing technologies.
    Chen L; Guttieres D; Koenigsberg A; Barone PW; Sinskey AJ; Springs SL
    Biomaterials; 2022 Jan; 280():121274. PubMed ID: 34871881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H; Hwangbo H; Koo Y; Kim G
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow.
    Reiss J; Robertson S; Suzuki M
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality.
    Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ
    Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of hyaluronic acid on biofunctionality of gelatin-collagen intestine tissue engineering scaffolds.
    Shabafrooz V; Mozafari M; Köhler GA; Assefa S; Vashaee D; Tayebi L
    J Biomed Mater Res A; 2014 Sep; 102(9):3130-9. PubMed ID: 24132994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis.
    Parenteau-Bareil R; Gauvin R; Cliche S; Gariépy C; Germain L; Berthod F
    Acta Biomater; 2011 Oct; 7(10):3757-65. PubMed ID: 21723967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats.
    Jwo SC; Chiu CH; Tang SJ; Hsieh MF
    Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus.
    Kuppan P; Sethuraman S; Krishnan UM
    J Biomater Sci Polym Ed; 2014; 25(6):574-93. PubMed ID: 24502395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical Simulation of Mass Transfer and Three-Dimensional Fabrication of Tissue-Engineered Cartilages Based on Chitosan/Gelatin Hybrid Hydrogel Scaffold in a Rotating Bioreactor.
    Zhu Y; Song K; Jiang S; Chen J; Tang L; Li S; Fan J; Wang Y; Zhao J; Liu T
    Appl Biochem Biotechnol; 2017 Jan; 181(1):250-266. PubMed ID: 27526111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant-derived human collagen scaffolds for skin tissue engineering.
    Willard JJ; Drexler JW; Das A; Roy S; Shilo S; Shoseyov O; Powell HM
    Tissue Eng Part A; 2013 Jul; 19(13-14):1507-18. PubMed ID: 23298216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomaterials and scaffolds in bone and musculoskeletal engineering.
    Kosuge D; Khan WS; Haddad B; Marsh D
    Curr Stem Cell Res Ther; 2013 May; 8(3):185-91. PubMed ID: 23317466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Techno-economic modeling and assessment of cultivated meat: Impact of production bioreactor scale.
    Negulescu PG; Risner D; Spang ES; Sumner D; Block D; Nandi S; McDonald KA
    Biotechnol Bioeng; 2023 Apr; 120(4):1055-1067. PubMed ID: 36581609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Animal board invited review: Animal agriculture and alternative meats - learning from past science communication failures.
    Van Eenennaam AL; Werth SJ
    Animal; 2021 Oct; 15(10):100360. PubMed ID: 34563799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of various crosslinking agents on collagen/chitosan scaffolds for myocardial tissue engineering.
    Fang Y; Zhang T; Song Y; Sun W
    Biomed Mater; 2020 May; 15(4):045003. PubMed ID: 31530754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chondrogenesis in perfusion bioreactors using porous silk scaffolds and hESC-derived MSCs.
    Tiğli RS; Cannizaro C; Gümüşderelioğlu M; Kaplan DL
    J Biomed Mater Res A; 2011 Jan; 96(1):21-8. PubMed ID: 20949478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.