BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34152718)

  • 1. Modulating the Stacking Model of Covalent Organic Framework Isomers with Different Generation Efficiencies of Reactive Oxygen Species.
    Yang S; Li X; Qin Y; Cheng Y; Fan W; Lang X; Zheng L; Cao Q
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29471-29481. PubMed ID: 34152718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of electron-acceptor staggered AB Covalent triazine-based frameworks for enhanced visible-light-driven H
    Li Y; Zhang R; Li C; Li H; Fang Q; Xie T
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1449-1456. PubMed ID: 34742064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed Synthesis of a 2D Porphyrin-Based sp
    Chen R; Shi JL; Ma Y; Lin G; Lang X; Wang C
    Angew Chem Int Ed Engl; 2019 May; 58(19):6430-6434. PubMed ID: 30884054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating the Interlayer Stacking of Covalent Organic Frameworks for Efficient Acetylene Separation.
    Wang Z; Zhang Y; Wang T; Lin E; Wang T; Chen Y; Cheng P; Zhang Z
    Small; 2023 Aug; 19(32):e2303684. PubMed ID: 37191288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks.
    Kang C; Zhang Z; Wee V; Usadi AK; Calabro DC; Baugh LS; Wang S; Wang Y; Zhao D
    J Am Chem Soc; 2020 Jul; 142(30):12995-13002. PubMed ID: 32631051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Synthesis of a Triazine-Based sp
    Zhang F; Dong X; Wang Y; Lang X
    Small; 2023 Sep; 19(38):e2302456. PubMed ID: 37196416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic Liquid-accelerated Growth of Covalent Organic Frameworks with Tunable Layer-stacking.
    Deng L; Zhu S; Zou Q; Xie Q; Song G; Pan C; Wei B; Huang Z; Liu T; Tang J; Yuan J; Yu G
    Angew Chem Int Ed Engl; 2024 Jun; ():e202408453. PubMed ID: 38941108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective oxidation of amines powered with green light and oxygen over an anthraquinone covalent organic framework.
    Xiong K; Zhang F; Wang Y; Zeng B; Lang X
    J Colloid Interface Sci; 2023 Aug; 643():340-349. PubMed ID: 37080041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Porphyrin-Based Covalent Organic Framework for Metal-Free Photocatalytic Aerobic Oxidative Coupling of Amines.
    He H; Fang X; Zhai D; Zhou W; Li Y; Zhao W; Liu C; Li Z; Deng W
    Chemistry; 2021 Oct; 27(58):14390-14395. PubMed ID: 34383348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible modulation of interlayer stacking in 2D copper-organic frameworks for tailoring porosity and photocatalytic activity.
    You PY; Mo KM; Wang YM; Gao Q; Lin XC; Lin JT; Xie M; Wei RJ; Ning GH; Li D
    Nat Commun; 2024 Jan; 15(1):194. PubMed ID: 38172097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control Interlayer Stacking and Chemical Stability of Two-Dimensional Covalent Organic Frameworks via Steric Tuning.
    Wu X; Han X; Liu Y; Liu Y; Cui Y
    J Am Chem Soc; 2018 Nov; 140(47):16124-16133. PubMed ID: 30392376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid-triggered interlayer sliding of two-dimensional copper(i)-organic frameworks: more metal sites for catalysis.
    Zhou HG; Xia RQ; Zheng J; Yuan D; Ning GH; Li D
    Chem Sci; 2021 Mar; 12(18):6280-6286. PubMed ID: 34084425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of layered covalent-organic frameworks.
    Lukose B; Kuc A; Heine T
    Chemistry; 2011 Feb; 17(8):2388-92. PubMed ID: 21259346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-Stacking-Driven Fluorescence in a Two-Dimensional Imine-Linked Covalent Organic Framework.
    Albacete P; Martínez JI; Li X; López-Moreno A; Mena-Hernando SA; Platero-Prats AE; Montoro C; Loh KP; Pérez EM; Zamora F
    J Am Chem Soc; 2018 Oct; 140(40):12922-12929. PubMed ID: 30216717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision Construction of 2D Heteropore Covalent Organic Frameworks by a Multiple-Linking-Site Strategy.
    Qian C; Xu SQ; Jiang GF; Zhan TG; Zhao X
    Chemistry; 2016 Dec; 22(49):17784-17789. PubMed ID: 27778380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Power, Low Temperature and Atmospheric Pressure Plasma-Induced Polymerization: Facile Synthesis and Crystal Regulation of Covalent Organic Frameworks.
    He J; Jiang X; Xu F; Li C; Long Z; Chen H; Hou X
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):9984-9989. PubMed ID: 33594781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Phosphine-Amine-Linked Covalent Organic Framework with Staggered Stacking Structure for Lithium-Ion Conduction.
    Tan J; Weng W; Zhu J; Liu S; Xu J; An S; Wang C; Guo J
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202310972. PubMed ID: 37936564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band Gap Engineering in Solvochromic 2D Covalent Organic Framework Photocatalysts for Visible Light-Driven Enhanced Solar Fuel Production from Carbon Dioxide.
    Singh N; Yadav D; Mulay SV; Kim JY; Park NJ; Baeg JO
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14122-14131. PubMed ID: 33733735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flavin-inspired covalent organic framework for photocatalytic alcohol oxidation.
    Trenker S; Grunenberg L; Banerjee T; Savasci G; Poller LM; Muggli KIM; Haase F; Ochsenfeld C; Lotsch BV
    Chem Sci; 2021 Nov; 12(45):15143-15150. PubMed ID: 34909156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoactive Covalent Organic Frameworks for Catalyzing Organic Reactions.
    Yang L; Wang J; Zhao K; Fang Z; Qiao H; Zhai L; Mi L
    Chempluschem; 2022 Nov; 87(11):e202200281. PubMed ID: 36356987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.