These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 34152738)
1. Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG- Verma NK; Kar AK; Singh A; Jagdale P; Satija NK; Ghosh D; Patnaik S Biomacromolecules; 2021 Jul; 22(7):3069-3083. PubMed ID: 34152738 [TBL] [Abstract][Full Text] [Related]
2. The combination of nano-calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene-modified mesenchymal stem cells promotes bone regeneration in rat critical-sized calvarial defects. Liu Z; Yuan X; Fernandes G; Dziak R; Ionita CN; Li C; Wang C; Yang S Stem Cell Res Ther; 2017 May; 8(1):122. PubMed ID: 28545565 [TBL] [Abstract][Full Text] [Related]
3. Hybrid scaffolds of Mg alloy mesh reinforced polymer/extracellular matrix composite for critical-sized calvarial defect reconstruction. Chen Y; Ye SH; Sato H; Zhu Y; Shanov V; Tiasha T; D'Amore A; Luketich S; Wan G; Wagner WR J Tissue Eng Regen Med; 2018 Jun; 12(6):1374-1388. PubMed ID: 29677404 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Yu L; Cai Y; Wang H; Pan L; Li J; Chen S; Liu Z; Han F; Li B Acta Biomater; 2020 Aug; 112():75-86. PubMed ID: 32505802 [TBL] [Abstract][Full Text] [Related]
5. Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect. Kuttappan S; Mathew D; Jo JI; Tanaka R; Menon D; Ishimoto T; Nakano T; Nair SV; Nair MB; Tabata Y Acta Biomater; 2018 Sep; 78():36-47. PubMed ID: 30067947 [TBL] [Abstract][Full Text] [Related]
6. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering. Mathews S; Bhonde R; Gupta PK; Totey S J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1825-34. PubMed ID: 24723571 [TBL] [Abstract][Full Text] [Related]
7. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. Haberstroh K; Ritter K; Kuschnierz J; Bormann KH; Kaps C; Carvalho C; Mülhaupt R; Sittinger M; Gellrich NC J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):520-30. PubMed ID: 20225216 [TBL] [Abstract][Full Text] [Related]
8. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources. Stockmann P; Park J; von Wilmowsky C; Nkenke E; Felszeghy E; Dehner JF; Schmitt C; Tudor C; Schlegel KA J Craniomaxillofac Surg; 2012 Jun; 40(4):310-20. PubMed ID: 21723141 [TBL] [Abstract][Full Text] [Related]
9. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat. Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A; Kamali A J Control Release; 2017 May; 254():65-74. PubMed ID: 28363521 [TBL] [Abstract][Full Text] [Related]
10. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
11. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
12. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Chen Y; Kawazoe N; Chen G Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161 [TBL] [Abstract][Full Text] [Related]
13. Osteogenic human MSC-derived extracellular vesicles regulate MSC activity and osteogenic differentiation and promote bone regeneration in a rat calvarial defect model. Al-Sharabi N; Mohamed-Ahmed S; Shanbhag S; Kampleitner C; Elnour R; Yamada S; Rana N; Birkeland E; Tangl S; Gruber R; Mustafa K Stem Cell Res Ther; 2024 Feb; 15(1):33. PubMed ID: 38321490 [TBL] [Abstract][Full Text] [Related]
14. Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Raftery RM; Mencía Castaño I; Chen G; Cavanagh B; Quinn B; Curtin CM; Cryan SA; O'Brien FJ Biomaterials; 2017 Dec; 149():116-127. PubMed ID: 29024837 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes. Chu C; Deng J; Man Y; Qu Y Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():258-264. PubMed ID: 28575983 [TBL] [Abstract][Full Text] [Related]
16. A Zn Jing H; Wu Y; Lin Y; Luo T; Liu H; Luo Z Colloids Surf B Biointerfaces; 2024 Jul; 239():113971. PubMed ID: 38759296 [TBL] [Abstract][Full Text] [Related]
17. Nature-derived epigallocatechin gallate/duck's feet collagen/hydroxyapatite composite sponges for enhanced bone tissue regeneration. Kook YJ; Tian J; Jeon YS; Choi MJ; Song JE; Park CH; Reis RL; Khang G J Biomater Sci Polym Ed; 2018; 29(7-9):984-996. PubMed ID: 29207926 [TBL] [Abstract][Full Text] [Related]
18. Demineralized bone matrix scaffold modified with mRNA derived from osteogenically pre-differentiated MSCs improves bone repair. Leng Q; Liang Z; Lv Y Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111601. PubMed ID: 33321645 [TBL] [Abstract][Full Text] [Related]
19. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Przekora A; Ginalska G Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067 [TBL] [Abstract][Full Text] [Related]
20. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]