BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34153475)

  • 1. Augmented secretion of IL-1α from mouse oral squamous cell carcinoma (OSCC) vcells caused by serum deprivation and hypoxia promotes immune suppressive activity of mesenchymal stromal cells.
    Matsunami A; Mizuno-Kamiya M; Kawaki H; Takayama E; Ueno K; Ando M; Morimoto-Ito H; Muramatsu Y; Sumitomo S; Kondoh N
    J Oral Biosci; 2021 Sep; 63(3):284-291. PubMed ID: 34153475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7.
    Jung DW; Che ZM; Kim J; Kim K; Kim KY; Williams D; Kim J
    Int J Cancer; 2010 Jul; 127(2):332-44. PubMed ID: 19937793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PX-12 synergistically enhances the therapeutic efficacy of vorinostat under hypoxic tumor microenvironment in oral squamous cell carcinoma in vitro.
    Akhlaq R; Khan T; Ahmed T; Musharraf SG; Ali A
    Drug Dev Res; 2023 May; 84(3):556-560. PubMed ID: 36808757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia-induced up-regulation of angiogenin, besides VEGF, is related to progression of oral cancer.
    Kishimoto K; Yoshida S; Ibaragi S; Yoshioka N; Okui T; Hu GF; Sasaki A
    Oral Oncol; 2012 Nov; 48(11):1120-7. PubMed ID: 22694909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysregulation of hypoxia inducible factor-1alpha in head and neck squamous cell carcinoma cell lines correlates with invasive potential.
    Cohen NA; Lai SY; Ziober AF; Ziober BL
    Laryngoscope; 2004 Mar; 114(3):418-23. PubMed ID: 15091212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone mesenchymal stem cells are recruited via CXCL8-CXCR2 and promote EMT through TGF-β signal pathways in oral squamous carcinoma.
    Meng L; Zhao Y; Bu W; Li X; Liu X; Zhou D; Chen Y; Zheng S; Lin Q; Liu Q; Sun H
    Cell Prolif; 2020 Aug; 53(8):e12859. PubMed ID: 32588946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long noncoding RNA HAS2-AS1 mediates hypoxia-induced invasiveness of oral squamous cell carcinoma.
    Zhu G; Wang S; Chen J; Wang Z; Liang X; Wang X; Jiang J; Lang J; Li L
    Mol Carcinog; 2017 Oct; 56(10):2210-2222. PubMed ID: 28485478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-electrolyzed functional water-induces Interleukin-1α release from Intracellular Storage Sites in Oral Squamous Cell Carcinoma.
    Takemoto T; Kaetsu R; Hanayama M; Ishiyama Y; Sadamura M; Nishio K; Tsunoda M; Asano M; Motoyoshi M
    Int J Med Sci; 2021; 18(8):1746-1752. PubMed ID: 33746591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reciprocal interaction between carcinoma-associated fibroblasts and squamous carcinoma cells through interleukin-1α induces cancer progression.
    Bae JY; Kim EK; Yang DH; Zhang X; Park YJ; Lee DY; Che CM; Kim J
    Neoplasia; 2014 Nov; 16(11):928-38. PubMed ID: 25425967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Siah-1 is associated with expression of hypoxia-inducible factor-1α in oral squamous cell carcinoma.
    Aga M; Kondo S; Wakisaka N; Moriyama-Kita M; Endo K; Nakanishi Y; Murono S; Sugimoto H; Ueno T; Yoshizaki T
    Auris Nasus Larynx; 2017 Apr; 44(2):213-219. PubMed ID: 27616748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia enhances CXCR4 expression by activating HIF-1 in oral squamous cell carcinoma.
    Ishikawa T; Nakashiro K; Klosek SK; Goda H; Hara S; Uchida D; Hamakawa H
    Oncol Rep; 2009 Mar; 21(3):707-12. PubMed ID: 19212630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia inducible factor 1α and hypoxia inducible factor 2α play distinct and functionally overlapping roles in oral squamous cell carcinoma.
    Zhu GQ; Tang YL; Li L; Zheng M; Jiang J; Li XY; Chen SX; Liang XH
    Clin Cancer Res; 2010 Oct; 16(19):4732-41. PubMed ID: 20807755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Letter to the editor: is HIF-1α a viable prognostic indicator in OSCC? A critical review of a meta-analysis study.
    Jayaraj R; Kumarasamy C; Madurantakam Royam M; Devi A; Baxi S
    World J Surg Oncol; 2018 Jun; 16(1):111. PubMed ID: 29914529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcutaneous carbon dioxide suppresses epithelial-mesenchymal transition in oral squamous cell carcinoma.
    Iwata E; Hasegawa T; Takeda D; Ueha T; Kawamoto T; Akisue T; Sakai Y; Komori T
    Int J Oncol; 2016 Apr; 48(4):1493-8. PubMed ID: 26846904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment.
    Zhang J; Zhang Q; Lou Y; Fu Q; Chen Q; Wei T; Yang J; Tang J; Wang J; Chen Y; Zhang X; Zhang J; Bai X; Liang T
    Hepatology; 2018 May; 67(5):1872-1889. PubMed ID: 29171040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-induced epithelial-mesenchymal transition is regulated by phosphorylation of GSK3-β via PI3 K/Akt signaling in oral squamous cell carcinoma.
    Kaneko T; Dehari H; Sasaki T; Igarashi T; Ogi K; Okamoto JY; Kawata M; Kobayashi JI; Miyazaki A; Nakamori K; Hiratsuka H
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2016 Dec; 122(6):719-730. PubMed ID: 27614812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associations among pretreatment tumor necrosis and the expression of HIF-1α and PD-L1 in advanced oral squamous cell carcinoma and the prognostic impact thereof.
    Chen TC; Wu CT; Wang CP; Hsu WL; Yang TL; Lou PJ; Ko JY; Chang YL
    Oral Oncol; 2015 Nov; 51(11):1004-1010. PubMed ID: 26365985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of PGK1 under hypoxic conditions promotes glycolysis and increases stem cell‑like properties and the epithelial‑mesenchymal transition in oral squamous cell carcinoma cells via the AKT signalling pathway.
    Zhang Y; Cai H; Liao Y; Zhu Y; Wang F; Hou J
    Int J Oncol; 2020 Sep; 57(3):743-755. PubMed ID: 32705252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of oral squamous cell carcinoma via LncRNA-CAF/interleukin-33.
    Ding L; Ren J; Zhang D; Li Y; Huang X; Hu Q; Wang H; Song Y; Ni Y; Hou Y
    Carcinogenesis; 2018 Mar; 39(3):397-406. PubMed ID: 29346528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of interleukin-1alpha, interleukin-1 receptor antagonist, and neutralizing antibody on proinflammatory cytokine expression by human squamous cell carcinoma lines.
    Chen Z; Colon I; Ortiz N; Callister M; Dong G; Pegram MY; Arosarena O; Strome S; Nicholson JC; Van Waes C
    Cancer Res; 1998 Aug; 58(16):3668-76. PubMed ID: 9721877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.