These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 34153540)

  • 21. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system.
    Faizan M; Bhat JA; Hessini K; Yu F; Ahmad P
    Ecotoxicol Environ Saf; 2021 Sep; 220():112401. PubMed ID: 34118747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO₂, Fe₃O₄, SnO₂, TiO₂) or metallic (Ag, Co, Ni) engineered nanoparticles.
    Vittori Antisari L; Carbone S; Gatti A; Vianello G; Nannipieri P
    Environ Sci Pollut Res Int; 2015 Feb; 22(3):1841-53. PubMed ID: 25189804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual Role of Metallic Trace Elements in Stress Biology-From Negative to Beneficial Impact on Plants.
    Muszyńska E; Labudda M
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31247908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Copper-based nanoparticles in the soil-plant environment: Assessing their applications, interactions, fate and toxicity.
    Bakshi M; Kumar A
    Chemosphere; 2021 Oct; 281():130940. PubMed ID: 34289610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?
    Vondráčková S; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of metal uptake in Spinacia oleracea irrigated with water containing a mixture of CuO and ZnO nanoparticles.
    Singh D; Kumar A
    Chemosphere; 2020 Mar; 243():125239. PubMed ID: 31733544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticles based on essential metals and their phytotoxicity.
    Ruttkay-Nedecky B; Krystofova O; Nejdl L; Adam V
    J Nanobiotechnology; 2017 Apr; 15(1):33. PubMed ID: 28446250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current trends and future prospective in nanoremediation of heavy metals contaminated soils: A way forward towards sustainable agriculture.
    Ahmed T; Noman M; Ijaz M; Ali S; Rizwan M; Ijaz U; Hameed A; Ahmad U; Wang Y; Sun G; Li B
    Ecotoxicol Environ Saf; 2021 Dec; 227():112888. PubMed ID: 34649136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review.
    Khan I; Awan SA; Rizwan M; Ali S; Hassan MJ; Brestic M; Zhang X; Huang L
    Ecotoxicol Environ Saf; 2021 Oct; 222():112510. PubMed ID: 34273846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fate and transport of metal trace elements from phosphogypsum piles in Tunisia and their impact on soil bacteria and wild plants.
    Jalali J; Gaudin P; Capiaux H; Ammar E; Lebeau T
    Ecotoxicol Environ Saf; 2019 Jun; 174():12-25. PubMed ID: 30802673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of transgenic plants in the bioremediation of soils contaminated with trace elements.
    Krämer U; Chardonnens AN
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):661-72. PubMed ID: 11525612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties.
    Shaheen SM; Tsadilas CD; Rinklebe J
    Adv Colloid Interface Sci; 2013 Dec; 201-202():43-56. PubMed ID: 24168932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The behavior, transport, and positive regulation mechanism of ZnO nanoparticles in a plant-soil-microbe environment.
    Lv W; Geng H; Zhou B; Chen H; Yuan R; Ma C; Liu R; Xing B; Wang F
    Environ Pollut; 2022 Dec; 315():120368. PubMed ID: 36216179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants.
    Hussain A; Ali S; Rizwan M; Zia Ur Rehman M; Javed MR; Imran M; Chatha SAS; Nazir R
    Environ Pollut; 2018 Nov; 242(Pt B):1518-1526. PubMed ID: 30144725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.
    Wang F; Liu X; Shi Z; Tong R; Adams CA; Shi X
    Chemosphere; 2016 Mar; 147():88-97. PubMed ID: 26761602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lead uptake, toxicity, and detoxification in plants.
    Pourrut B; Shahid M; Dumat C; Winterton P; Pinelli E
    Rev Environ Contam Toxicol; 2011; 213():113-36. PubMed ID: 21541849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological and biochemical response of wheat (Triticum aestivum) to TiO
    Ullah S; Adeel M; Zain M; Rizwan M; Irshad MK; Jilani G; Hameed A; Khan A; Arshad M; Raza A; Baluch MA; Rui Y
    J Environ Manage; 2020 Jun; 263():110365. PubMed ID: 32883473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles.
    Soni S; Jha AB; Dubey RS; Sharma P
    Sci Total Environ; 2024 Feb; 912():168826. PubMed ID: 38042185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.