These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34153609)

  • 1. Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO
    Lu Z; Qi X; Zhu X; Li X; Li K; Wang H
    Environ Pollut; 2021 Oct; 287():117484. PubMed ID: 34153609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly effective remediation of high arsenic-bearing wastewater using aluminum-containing waste residue.
    Yang N; Qi X; Li Y; Li G; Duan X
    J Environ Manage; 2023 Jan; 325(Pt A):116417. PubMed ID: 36257224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Zhang RY; Schippers A; Shu WS; Qian LX
    Water Res; 2021 Sep; 203():117539. PubMed ID: 34407485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step removal of high-concentration arsenic from wastewater to form Johnbaumite using arsenic-bearing gypsum.
    Sun X; Mao M; Lu K; Hu Q; Liu W; Lin Z
    J Hazard Mater; 2022 Feb; 424(Pt C):127585. PubMed ID: 34753651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness and mechanism of uranium adsorption on size-graded red mud.
    Chen Z; Su M; Chen N; Liang D; Chen D
    Environ Res; 2022 Sep; 212(Pt D):113491. PubMed ID: 35618003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of arsenic in acidic wastewater using Lead-Zinc smelting slag: From waste solid to As-stabilized mineral.
    Li Y; Qi X; Li G; Duan X; Yang N
    Chemosphere; 2022 Aug; 301():134736. PubMed ID: 35500627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation plants (ramie) and steel smelting wastes for calcium silicate coated-nZVI/biochar production: Environmental risk assessment and efficient As(V) removal mechanisms.
    Tan X; Deng Y; Shu Z; Zhang C; Ye S; Chen Q; Yang H; Yang L
    Sci Total Environ; 2022 Oct; 844():156924. PubMed ID: 35779737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes.
    Cho DW; Yoon K; Ahn Y; Sun Y; Tsang DCW; Hou D; Ok YS; Song H
    J Hazard Mater; 2019 Jul; 374():412-419. PubMed ID: 31029746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags.
    Zhang X; Sun Y; Ma Y; Ji W; Ren Y
    Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic sorption by red mud-modified biochar produced from rice straw.
    Wu C; Huang L; Xue SG; Huang YY; Hartley W; Cui MQ; Wong MH
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18168-18178. PubMed ID: 28634793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of red mud as an environmental remediation material: A review.
    Wang M; Liu X
    J Hazard Mater; 2021 Apr; 408():124420. PubMed ID: 33191032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic pollution remediation mechanism and preliminary application of arsenic-oxidizing bacteria isolated from industrial wastewater.
    Zhao M; Zheng G; Kang X; Zhang X; Guo J; Zhang M; Zhang J; Chen Y; Xue L
    Environ Pollut; 2023 May; 324():121384. PubMed ID: 36868549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of Lead Slag as In Situ Iron Source for Arsenic Removal by Forming Iron Arsenate.
    Chen P; Zhao Y; Yao J; Zhu J; Cao J
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing arsenic sorption on red mud by phosphogypsum addition.
    Lopes G; Guilherme LR; Costa ET; Curi N; Penha HG
    J Hazard Mater; 2013 Nov; 262():1196-203. PubMed ID: 22795841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic removal and recovery from copper smelting wastewater using TiO2.
    Luo T; Cui J; Hu S; Huang Y; Jing C
    Environ Sci Technol; 2010 Dec; 44(23):9094-8. PubMed ID: 21053910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.
    Yang JX; Guo QJ; Yang J; Zhou XY; Ren HY; Zhang HZ; Xu RX; Wang XD; Peters M; Zhu GX; Wei RF; Tian LY; Han XK
    Int J Phytoremediation; 2016; 18(3):269-77. PubMed ID: 26505322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductive roasting of arsenic-contaminated red mud for Fe resources recovery driven by johnbaumite-based arsenic thermostabilization strategy.
    Yang D; Shi M; Zhang J; Sasaki A; Endo M
    J Hazard Mater; 2023 Jun; 452():131255. PubMed ID: 36989791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals.
    Li YC; Min XB; Chai LY; Shi MQ; Tang CJ; Wang QW; Liang YJ; Lei J; Liyang WJ
    J Environ Manage; 2016 Oct; 181():756-761. PubMed ID: 27449964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of antibiotics from aqueous solution by using magnetic Fe
    Aydin S; Aydin ME; Beduk F; Ulvi A
    Sci Total Environ; 2019 Jun; 670():539-546. PubMed ID: 30909031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insight into the adsorption of mercury (II) on the surface of red mud supported nanoscale zero-valent iron composite.
    Sahu MK; Patel RK; Kurwadkar S
    J Contam Hydrol; 2022 Apr; 246():103959. PubMed ID: 35066263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.