These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 34153635)
1. Integrating neurocognitive challenges into injury prevention training: A clinical commentary. Walker JM; Brunst CL; Chaput M; Wohl TR; Grooms DR Phys Ther Sport; 2021 Sep; 51():8-16. PubMed ID: 34153635 [TBL] [Abstract][Full Text] [Related]
2. A Majority of Anterior Cruciate Ligament Injuries Can Be Prevented by Injury Prevention Programs: A Systematic Review of Randomized Controlled Trials and Cluster-Randomized Controlled Trials With Meta-analysis. Huang YL; Jung J; Mulligan CMS; Oh J; Norcross MF Am J Sports Med; 2020 May; 48(6):1505-1515. PubMed ID: 31469584 [TBL] [Abstract][Full Text] [Related]
3. Rationale and implementation of anterior cruciate ligament injury prevention warm-up programs in female athletes. Bien DP J Strength Cond Res; 2011 Jan; 25(1):271-85. PubMed ID: 21116195 [TBL] [Abstract][Full Text] [Related]
4. The Effect of Neurocognitive Training on Biomechanical Risk Factors Related to Anterior Cruciate Ligament Injury in Athletes: A Narrative Review. Hamoongard M; Letafatkar A; Thomas AC J Sport Rehabil; 2024 Sep; 33(7):485-494. PubMed ID: 39117316 [TBL] [Abstract][Full Text] [Related]
5. Age Influences Biomechanical Changes After Participation in an Anterior Cruciate Ligament Injury Prevention Program. Thompson-Kolesar JA; Gatewood CT; Tran AA; Silder A; Shultz R; Delp SL; Dragoo JL Am J Sports Med; 2018 Mar; 46(3):598-606. PubMed ID: 29281799 [TBL] [Abstract][Full Text] [Related]
6. National Athletic Trainers' Association Position Statement: Prevention of Anterior Cruciate Ligament Injury. Padua DA; DiStefano LJ; Hewett TE; Garrett WE; Marshall SW; Golden GM; Shultz SJ; Sigward SM J Athl Train; 2018 Jan; 53(1):5-19. PubMed ID: 29314903 [TBL] [Abstract][Full Text] [Related]
7. Utilization of ACL Injury Biomechanical and Neuromuscular Risk Profile Analysis to Determine the Effectiveness of Neuromuscular Training. Hewett TE; Ford KR; Xu YY; Khoury J; Myer GD Am J Sports Med; 2016 Dec; 44(12):3146-3151. PubMed ID: 27474385 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical Effects of an Injury Prevention Program in Preadolescent Female Soccer Athletes. Thompson JA; Tran AA; Gatewood CT; Shultz R; Silder A; Delp SL; Dragoo JL Am J Sports Med; 2017 Feb; 45(2):294-301. PubMed ID: 27793803 [TBL] [Abstract][Full Text] [Related]
9. Evidence-Based Best-Practice Guidelines for Preventing Anterior Cruciate Ligament Injuries in Young Female Athletes: A Systematic Review and Meta-analysis. Petushek EJ; Sugimoto D; Stoolmiller M; Smith G; Myer GD Am J Sports Med; 2019 Jun; 47(7):1744-1753. PubMed ID: 30001501 [TBL] [Abstract][Full Text] [Related]
10. Landing Technique and Performance in Youth Athletes After a Single Injury-Prevention Program Session. Root H; Trojian T; Martinez J; Kraemer W; DiStefano LJ J Athl Train; 2015 Nov; 50(11):1149-57. PubMed ID: 26523663 [TBL] [Abstract][Full Text] [Related]
11. Drop-Jump Landing Varies With Baseline Neurocognition: Implications for Anterior Cruciate Ligament Injury Risk and Prevention. Herman DC; Barth JT Am J Sports Med; 2016 Sep; 44(9):2347-53. PubMed ID: 27474381 [TBL] [Abstract][Full Text] [Related]
12. Exploring individual adaptations to an anterior cruciate ligament injury prevention programme. Fox AS; Bonacci J; McLean SG; Saunders N Knee; 2018 Jan; 25(1):83-98. PubMed ID: 29329889 [TBL] [Abstract][Full Text] [Related]
13. Prevention and screening programs for anterior cruciate ligament injuries in young athletes: a cost-effectiveness analysis. Swart E; Redler L; Fabricant PD; Mandelbaum BR; Ahmad CS; Wang YC J Bone Joint Surg Am; 2014 May; 96(9):705-11. PubMed ID: 24806006 [TBL] [Abstract][Full Text] [Related]
14. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. Grooms D; Appelbaum G; Onate J J Orthop Sports Phys Ther; 2015 May; 45(5):381-93. PubMed ID: 25579692 [TBL] [Abstract][Full Text] [Related]
15. Effectiveness of Neuromuscular Training Based on the Neuromuscular Risk Profile. Hewett TE; Ford KR; Xu YY; Khoury J; Myer GD Am J Sports Med; 2017 Jul; 45(9):2142-2147. PubMed ID: 28441059 [TBL] [Abstract][Full Text] [Related]
16. Effects of an Intervention Program on Lower Extremity Biomechanics in Stop-Jump and Side-Cutting Tasks. Yang C; Yao W; Garrett WE; Givens DL; Hacke J; Liu H; Yu B Am J Sports Med; 2018 Oct; 46(12):3014-3022. PubMed ID: 30148646 [TBL] [Abstract][Full Text] [Related]
17. Preventive Biomechanics: A Paradigm Shift With a Translational Approach to Injury Prevention. Hewett TE; Bates NA Am J Sports Med; 2017 Sep; 45(11):2654-2664. PubMed ID: 28199800 [TBL] [Abstract][Full Text] [Related]
18. Reducing the risk of noncontact anterior cruciate ligament injuries in the female athlete. Barber-Westin SD; Noyes FR; Smith ST; Campbell TM Phys Sportsmed; 2009 Oct; 37(3):49-61. PubMed ID: 20048528 [TBL] [Abstract][Full Text] [Related]
19. Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: a randomised controlled trial. Zebis MK; Andersen LL; Brandt M; Myklebust G; Bencke J; Lauridsen HB; Bandholm T; Thorborg K; Hölmich P; Aagaard P Br J Sports Med; 2016 May; 50(9):552-7. PubMed ID: 26400955 [TBL] [Abstract][Full Text] [Related]
20. Effects of an age-specific anterior cruciate ligament injury prevention program on lower extremity biomechanics in children. DiStefano LJ; Blackburn JT; Marshall SW; Guskiewicz KM; Garrett WE; Padua DA Am J Sports Med; 2011 May; 39(5):949-57. PubMed ID: 21285445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]