These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34154083)

  • 1. Modelling of the optical signature of oil slicks at sea for the analysis of multi- and hyperspectral VNIR-SWIR images.
    Caillault K; Roupioz L; Viallefont-Robinet F
    Opt Express; 2021 Jun; 29(12):18224-18242. PubMed ID: 34154083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters--a case study in the Arabian Gulf.
    Zhao J; Temimi M; Ghedira H; Hu C
    Opt Express; 2014 Jun; 22(11):13755-72. PubMed ID: 24921568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Spectral response analysis of offshore thin oil slicks].
    Lu YC; Tian QJ; Qi XP; Wang JJ; Wang XC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):986-9. PubMed ID: 19626887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring the Sea Surface Microlayer (SML) on Sentinel images.
    Nichol JE; Antonarakis AS; Nazeer M
    Sci Total Environ; 2023 May; 872():162218. PubMed ID: 36796692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI).
    Ru C; Li Z; Tang R
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea.
    Angelliaume S; Ceamanos X; Viallefont-Robinet F; Baqué R; Déliot P; Miegebielle V
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28767059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reference spectral signature selection using density-based cluster for automatic oil spill detection in hyperspectral images.
    Liu D; Zhang J; Wang X
    Opt Express; 2016 Apr; 24(7):7411-25. PubMed ID: 27137031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of automatic marine oil spills detection using imaging spectroscopy].
    Liu DL; Han L; Zhang JQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3116-9. PubMed ID: 24555393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of thickness of highly inhomogeneous crude oil slicks.
    Cheemalapati S; Forth HP; Wang H; Konnaiyan KR; Morris JM; Pyayt AL
    Appl Opt; 2017 Apr; 56(11):E72-E76. PubMed ID: 28414344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling a Spectral Index to Detect Dispersed Oil in a Seawater Column Depending on the Viewing Angle: Gulf of Gdańsk Case Study.
    Baszanowska E; Otremba Z; Piskozub J
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of the optical contrast of an oil film on a sea surface.
    Otremba Z; Piskozub J
    Opt Express; 2001 Oct; 9(8):411-6. PubMed ID: 19424358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airborne ultraviolet imaging system for oil slick surveillance: oil-seawater contrast, imaging concept, signal-to-noise ratio, optical design, and optomechanical model.
    Shi Z; Yu L; Cao D; Wu Q; Yu X; Lin G
    Appl Opt; 2015 Sep; 54(25):7648-55. PubMed ID: 26368888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comprehensive Compilation of Spectral Libraries for Petroleum Hydrocarbons (PHC) Encompassing VNIR-SWIR-TIR Ranges.
    de Souza Filho CR; Scafutto RDPM
    Sci Data; 2024 Oct; 11(1):1073. PubMed ID: 39358422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring.
    De Padova D; Mossa M; Adamo M; De Carolis G; Pasquariello G
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5530-5543. PubMed ID: 28028707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIDSAG: Hyperspectral Image Database for Supervised Analysis in Geometallurgy.
    Ehrenfeld A; Egaña ÁF; Santibañez-Leal F; Garrido F; Ojeda M; Townley B; Navarro F
    Sci Data; 2023 Mar; 10(1):164. PubMed ID: 36959253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and object-based classification of offshore oil slicks using ENVISAT-ASAR images.
    Akar S; Süzen ML; Kaymakci N
    Environ Monit Assess; 2011 Dec; 183(1-4):409-23. PubMed ID: 21380923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Experimental study of offshore oil thickness hyperspectral inversion based on bio-optical model].
    Xiao JW; Tian QJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):183-7. PubMed ID: 22497155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oil slicks on water surface: Breakup, coalescence, and droplet formation under breaking waves.
    Nissanka ID; Yapa PD
    Mar Pollut Bull; 2017 Jan; 114(1):480-493. PubMed ID: 27745739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Lagrangian analysis of the gravity-inertial oil spreading on the calm sea using the reflective oil-water interface treatment.
    Fraga Filho CAD
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):17170-17180. PubMed ID: 33398763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light Penetrating the Seawater Column as the Indicator of Oil Suspension-Monte Carlo Modelling for the Case of the Southern Baltic Sea.
    Lednicka B; Otremba Z; Piskozub J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.