These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34154119)

  • 1. Distortion correction for particle image velocimetry using multiple-input deep convolutional neural network and Hartmann-Shack sensing.
    Gao Z; Radner H; Büttner L; Ye H; Li X; Czarske J
    Opt Express; 2021 Jun; 29(12):18669-18687. PubMed ID: 34154119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavefront sensor-less adaptive optics using deep reinforcement learning.
    Durech E; Newberry W; Franke J; Sarunic MV
    Biomed Opt Express; 2021 Sep; 12(9):5423-5438. PubMed ID: 34692192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed loop adaptive optics for microscopy without a wavefront sensor.
    Kner P; Winoto L; Agard DA; Sedat JW
    Proc SPIE Int Soc Opt Eng; 2010 Feb; 7570():. PubMed ID: 24392198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation.
    Lechner D; Zepp A; Eichhorn M; Gładysz S
    Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-spatial resolution stacked-actuator deformable mirror for correction of atmospheric wavefront aberrations.
    Samarkin V; Sheldakova J; Toporovsky V; Rukosuev A; Kudryashov A
    Appl Opt; 2021 Aug; 60(23):6719-6724. PubMed ID: 34613147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensity-enhanced deep network wavefront reconstruction in Shack-Hartmann sensors.
    DuBose TB; Gardner DF; Watnik AT
    Opt Lett; 2020 Apr; 45(7):1699-1702. PubMed ID: 32235977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.
    Wang S; Yang P; Xu B; Dong L; Ao M
    Opt Express; 2015 Feb; 23(4):5052-64. PubMed ID: 25836540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of wave-front sampling in adaptive optics retinal imaging.
    Laslandes M; Salas M; Hitzenberger CK; Pircher M
    Biomed Opt Express; 2017 Feb; 8(2):1083-1100. PubMed ID: 28271004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoupling algorithm of a double-layer bimorph deformable mirror: analysis and experimental test.
    Ning Y; Chen B; Yu H; Zhou H; Yang H; Guan C; Rao C; Jiang W
    Appl Opt; 2009 Jun; 48(17):3154-9. PubMed ID: 19516352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lossy wavefront sensing and correction of distorted laser beams.
    Wu C; Ko J; Davis CC
    Appl Opt; 2020 Jan; 59(3):817-824. PubMed ID: 32225223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy.
    Merino D; Dainty C; Bradu A; Podoleanu AG
    Opt Express; 2006 Apr; 14(8):3345-53. PubMed ID: 19516479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of phase singularities with a Shack-Hartmann wavefront sensor.
    Chen M; Roux FS; Olivier JC
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1994-2002. PubMed ID: 17728823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modal-based phase retrieval for adaptive optics.
    Antonello J; Verhaegen M
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jun; 32(6):1160-70. PubMed ID: 26367051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics.
    Büttner L; Leithold C; Czarske J
    Opt Express; 2013 Dec; 21(25):30653-63. PubMed ID: 24514641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tolerance analysis method for Shack-Hartmann sensors using a variable phase surface.
    Curatu C; Curatu G; Rolland J
    Opt Express; 2006 Jan; 14(1):138-47. PubMed ID: 19503325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE).
    Pilar J; Slezak O; Sikocinski P; Divoky M; Sawicka M; Bonora S; Lucianetti A; Mocek T; Jelinkova H
    Appl Opt; 2014 May; 53(15):3255-61. PubMed ID: 24922211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction.
    Wahl DJ; Zhang P; Mocci J; Quintavalla M; Muradore R; Jian Y; Bonora S; Sarunic MV; Zawadzki RJ
    Biomed Opt Express; 2019 Sep; 10(9):4757-4774. PubMed ID: 31565523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star.
    Koukourakis N; Fregin B; König J; Büttner L; Czarske JW
    Opt Express; 2016 Sep; 24(19):22074-87. PubMed ID: 27661942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.